Advertisement

The Nature of Science in Secondary School Geology: Studying Recontextualizing Processes

  • Ana M. MoraisEmail author
  • Sílvia Castro
  • Sílvia Ferreira
  • Isabel P. Neves
Chapter
Part of the Science: Philosophy, History and Education book series (SPHE)

Abstract

The chapter analyzes official curricula and textbooks of geology teaching in Portuguese secondary school (age 15–16). In epistemological terms, the study uses Ziman’s conceptualization of science construction and in sociological terms uses Bernstein’s model of pedagogical discourse. Methodologically, the study combines quantitative and qualitative methods of analysis. The results show that recontextualizing processes did occur within the curricula and between the curricula and textbooks. It influences teachers perceptions of the messages contained in these texts and may have consequences for their pedagogical practices.

References

  1. Anderson, L. W., Krathwohl, D., Airasian, P., Cruikshank, K., Mayer, R., Pintrich, P., Raths, J., & Wittrock, M. (Eds.). (2001). A taxonomy for learning, teaching and assessing: A revision of Bloom’s taxonomy of educational objectives. New York: Longman.Google Scholar
  2. Aydin, S., & Tortumlu, S. (2015). The analysis of the changes in integration of nature of science into Turkish high school chemistry textbooks: Is there any development? Chemistry Education Research and Practice, 16, 786–796.CrossRefGoogle Scholar
  3. Bernstein, B. (1990). Class, codes and control. Vol. IV: The structuring of pedagogic discourse. London: Routledge.CrossRefGoogle Scholar
  4. Bernstein, B. (2000). Pedagogy, symbolic control and identity: Theory, research, critique (Revised ed.). New York: Rowman & Littlefield.Google Scholar
  5. Brandwein, P., Cooper, E., Blackwood, P., Cottom-Winslow, M., Boeschen, J., Giddings, M., Romero, F., & Carin, A. (1980). Concepts in science: Teacher’s edition. New York: Harcourt Brace Jovanovich.Google Scholar
  6. Calado, S., & Neves, I. P. (2012). Currículo e manuais escolares em contexto de flexibilidade curricular: Estudo de processos de recontextualização. Revista Portuguesa de Educação, 25(1), 53–93.CrossRefGoogle Scholar
  7. Cantu, L. L., & Dudley Herron, J. (1978). Concrete and formal Piagetian stages and science concept attainment. Journal of Research in Science Teaching, 15(2), 135–143.CrossRefGoogle Scholar
  8. Castro, S. (2006). A construção da ciência na educação científica do ensino secundário: Análise do programa de Biologia e Geologia do 10.° ano. Dissertação Mestrado, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.Google Scholar
  9. Castro, S. (2017). A construção da ciência na educação científica do ensino secundário: Estudo do discurso pedagógico do programa e de manuais escolares de Biologia e Geologia do 10.° ano e das concepções dos professores. Tese Doutorado, Instituto de Educação, Universidade de Lisboa, Lisboa, Portugal.Google Scholar
  10. Cavadas, B., & Guimarães, F. (2012). Práticas inovadoras nos manuais escolares de zoologia. In J. V. Brás & M. N. Gonçalves (Eds.), O corpo: Memória e identidade (pp. 77–87). Lisboa: Edições Universitárias Lusófonas.Google Scholar
  11. Clough, M. P., & Olson, J. K. (2008). Teaching and assessing the nature of science: An introduction. Journal of Science & Education, 17(2–3), 143–145.Google Scholar
  12. DES, Departamento do Ensino Secundário. (2001). Programa de Biologia e Geologia: 10.° ou 11.° anos. Lisboa: Ministério da Educação.Google Scholar
  13. Ferreira, S., & Morais, A. M. (2013). The nature of science in science curricula: Methods and concepts of analysis. International Journal of Science Education, 35(16), 2670–2691.CrossRefGoogle Scholar
  14. Ferreira, S., Morais, A. M., Neves, I. P., Saraiva, L., & Castro, S. (2015). Conceptualização da construção da ciência em currículos e manuais escolares. In Conselho Nacional de Educação, CNE (Ed.), Currículos de nível elevado no ensino das ciências (pp. 180–238). Lisboa: CNE.Google Scholar
  15. Gall, M. D., Gall, J. P., & Borg, W. R. (2007). Educational research: An introduction (8th ed.). Boston: Pearson/Allyn and Bacon.Google Scholar
  16. Hodson, D. (2014). Nature of science in the science curriculum: Origin, development, implications and shifting emphases. In M. R. Mathews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 911–970). Dordrecht: Springer.Google Scholar
  17. Irzik, G., & Nola, R. (2011). A family resemblance approach to the nature of science for science education. Science & Education, 20, 591–607.CrossRefGoogle Scholar
  18. Lederman, N. G. (2007). Nature of science: Past, present, and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831–879). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  19. Matthews, M. R. (Ed.). (2009). Science, worldviews and education. Dordrecht: Springer.Google Scholar
  20. McComas, W. F. (2014). Nature of science in the science curriculum and in teacher education programs in the United States. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1993–2022). Dordrecht: Springer.Google Scholar
  21. McComas, W. F., & Olson, J. K. (1998). The nature of science in international science education standards documents. In W. F. McComas (Ed.), The nature of science in science education: Rationales and strategies (pp. 41–52). Dordrecht: Kluwer.Google Scholar
  22. Millar, R., & Osborne, J. (1998). Beyond 2000: Science education for the future. London: King’s College London School of Education.Google Scholar
  23. Morais, A. M., & Neves, I. P. (2010). Basil Bernstein as an inspiration for educational research: Specific methodological approaches. In P. Singh, A. R. Sadovnik, & S. F. Semel (Eds.), Toolkits, translation devices and conceptual accounts: Essays on Basil Bernstein’s sociology of knowledge (pp. 11–32). New York: Peter Lang.Google Scholar
  24. Morais, A. M., & Neves, I. P. (2016). Vertical discourses and science education: Analysing conceptual demands of educational texts. In P. Vitale & B. Exley (Eds.), Pedagogic rights and democratic education: Bernsteinian explorations of curriculum, pedagogy and assessment (pp. 174–191). London: Routledge.Google Scholar
  25. OCDE. (2016). PISA 2015 Assessment and analytical framework: Science, reading, mathematic and financial literacy.  https://doi.org/10.1787/9789264255425-en. Accessed 3 Dec 2016.
  26. Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections. London: The Nuffield Foundation.Google Scholar
  27. Taber, K. S. (2017). Reflecting the nature of science in science education. In K. S. Taber & B. Akpan (Eds.), Science education: An international course companion (pp. 23–37). Rotterdam: Sense Publishers.CrossRefGoogle Scholar
  28. Valverde, G. A., Bianchi, L. J., Wolfe, R. G., Schmidt, W. H., & Houang, R. T. (2002). According to the book: Using TIMSS to investigate the translation of policy into practice through the world of textbooks. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  29. Vesterinen, V.-M., Aksela, M., & Sundberg, M. R. (2009). Nature of chemistry in the national frame curricula for upper secondary education in Finland, Norway and Sweden. NorDiNa, 5(2), 200–212.CrossRefGoogle Scholar
  30. Ziman, J. M. (1984). An introduction to science studies: The philosophical and social aspects of science and technology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  31. Ziman, J. M. (2000). Real science: What it is, and what it means. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ana M. Morais
    • 1
    Email author
  • Sílvia Castro
    • 1
  • Sílvia Ferreira
    • 1
    • 2
  • Isabel P. Neves
    • 1
  1. 1.UIDEF, Instituto de Educação, Universidade de LisboaLisbonPortugal
  2. 2.Agrupamento de Escolas de São GonçaloTorres VedrasPortugal

Personalised recommendations