Introduction: Integrating History and Epistemology of Mathematics in Mathematics Education

  • Kathleen M. Clark
  • Tinne Hoff Kjeldsen
  • Sebastian Schorcht
  • Constantinos Tzanakis
Chapter
Part of the ICME-13 Monographs book series (ICME13Mo)

Abstract

This chapter serves as an introduction to the seventeen chapters of this collective volume, by providing an outline of the key points that form the core and main concern of the approaches adopted towards integrating History and Epistemology of Mathematics in Mathematics Education (the HPM domain). After a  brief outline of the historical development of this domain, we address the key issues that have been central to the research in this domain and the implementation of its results in educational practice. Since these issues highlight the main points also addressed in the individual contributions to this volume, our introduction ends with a brief description of each chapter.

Keywords

History and pedagogy of mathematics History of mathematics Epistemology of mathematics Original sources Theoretical frameworks & constructs Interdisciplinary teaching Teacher education Cultures & mathematics 

References

  1. Alpaslan, M., Işıksal, M., & Haser, Ç. (2014). Pre-service mathematics teachers’ knowledge of history of mathematics and their attitudes and beliefs towards using history of mathematics in mathematics education. Science & Education, 23(1), 159–183.CrossRefGoogle Scholar
  2. Arcavi, A., & Isoda, M. (2007). Learning to listen: From historical sources to classroom practice. Educational Studies in Mathematics, 66(2), 111–129.CrossRefGoogle Scholar
  3. Barbin, É. (1997). Histoire des Mathématiques: Pourquoi? Comment? Bulletin de l’Association Mathématiques du Québec, 37(1), 20–25.Google Scholar
  4. Barbin, É. (2006). Apport de l’histoire des mathématiques et de l’histoire des sciences dans l’enseignement. Tréma, 26(1), 20–28.Google Scholar
  5. Barbin, É. (Ed.). (2010). Des grands défis mathématiques d’Euclide à Condorcet. Paris: Vuibert.Google Scholar
  6. Barbin, É. (Ed.). (2012). Les mathématiques éclairées par l’histoire: Des arpenteurs aux ingénieurs. Paris: Vuibert.Google Scholar
  7. Barbin, É. (2013). History and pedagogy of mathematics in France. In V. L. Hansen & J. Gray (Eds.), History of mathematics, in encyclopedia of life support systems (e-book). Oxford, UK: EOLSS.Google Scholar
  8. Barbin, É. (Ed.). (2015). Les Constructions Mathématiques dans l’histoire: Avec des Instruments et de Gestes (mathematical constructions: Making and doing). Paris: Ellipses-Editions.Google Scholar
  9. Barbin, É., & Bénard, D. (Eds.). (2007). Histoire et Enseignement des Mathématiques: Rigueurs, erreurs, raisonnements. Lyon: Institut National de Recherche Pédagogique.Google Scholar
  10. Barbin, É., & Tzanakis, C. (2014). History of mathematics and education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 255–260). New York: Springer.Google Scholar
  11. Barbin, É., Bagni, G. T., Grugnetti, L., Kronfellner, M., Lakoma, E., & Menghini, M. (2000). Integrating history: Research perspectives. In J. Fauvel & J. van Maanen (Eds.), History in mathematics education: The ICMI study. New ICMI Study Series (Vol. 6, pp. 63–90). Dordrecht: Kluwer.CrossRefGoogle Scholar
  12. Barbin, É., Stehlíková, N., & Tzanakis, C. (Eds.). (2008). History and Epistemology in Mathematics Education: Proceedings of the 5th ESU. Prague: Vydavatelský servis, Plzeň.Google Scholar
  13. Barbin, É., Kronfellner, M., & Tzanakis, C. (Eds.). (2011a). History and Epistemology in Mathematics Education: Proceedings of the 6th ESU. Wien: Holzhausen Verlag.Google Scholar
  14. Barbin, É., Furinghetti, F, Lawrence, S., & Smestad, B. (2011b). The role of the history and epistemology of mathematics in pre-service teachers training. In É. Barbin, M. Kronfellner, & C. Tzanakis (Eds.), History and Epistemology in Mathematics Education: Proceedings of the 6th ESU (pp. 27–46). Wien: Holzhausen Verlag.Google Scholar
  15. Barbin, É., Jankvist, U., & Kjeldsen, T. H. (Eds.) (2015). History and Epistemology in Mathematics Education: Proceedings of the 7th ESU. Copenhagen: Danish School of Education, Aarhus University. http://conferences.au.dk/fileadmin/conferences/ESU-7/ESU7_e-version-red.pdf. Accessed July 26, 2017.
  16. Barnett, J., Bezhanishvili, G., Leung, H., Lodder, J., Pengelley, D., & Ranjan, D. (2009). Historical projects in discrete mathematics and computer science. In B. Hopkins (Ed.), Resources for teaching discrete mathematics. MAA Notes (Vol. 74, pp. 163–276). Washington, DC: The Mathematical Association of America. http://www.math.nmsu.edu/hist_projects/DMRG.1.pdf. Accessed October 10, 2017.
  17. Barnett, J. H., Lodder, J., & Pengelley, D. (2014). The pedagogy of primary historical sources in mathematics: Classroom practice meets theoretical frameworks. Science & Education, 23(1), 7–27.CrossRefGoogle Scholar
  18. Beery, J. (2015). Visit the Convergence of mathematics, history, and teaching! HPM Newsletter, 90, 10–12.Google Scholar
  19. Bekken, O., & Mosvold, R. (Eds.). (2003). Study the masters. Nationellt Centrum för Matematikutbildning NCM, Göteborg: Göteborgs Universitet.Google Scholar
  20. Biegel, G., Reich, K., & Sonar, T. (Eds.). (2008). Historische Aspekte im Mathematikunterricht an Schule und Universität. Termessos: Göttingen & Stuttgart.Google Scholar
  21. Boero, P. (Ed.). (2007). Theorems in school. From history, epistemology and cognition to classroom practice. Rotterdam: Sense.Google Scholar
  22. Booker, G. (1986). Topic area: Relationship between the history and pedagogy of mathematics. In M. Carss (Ed.), Proceedings of the Fifth International Congress on Mathematical Education (pp. 256–260). Boston: Birkhäuser.Google Scholar
  23. Boyé, A., Demattè A., Lakoma, E., & Tzanakis, C. (2011). The history of mathematics in school textbooks. In É. Barbin, M. Kronfellner, & C. Tzanakis (Eds.), History and Epistemology in Mathematics Education: Proceedings of the 6th ESU (pp. 153–163). Wien: Holzhausen Verlag.Google Scholar
  24. Bruckheimer, M., & Arcavi, A. (2000). Mathematics and its history: An educational partnership. In V. Katz (Ed.), Using history to teach mathematics. An international perspective. MAA Notes (Vol. 51, pp. 135–146). Washington DC: The Mathematical Association of America.Google Scholar
  25. Burns, B. A. (2010). Pre-service teachers’ exposure to using the history of mathematics to enhance their teaching of high school mathematics. Issues in the Undergraduate Mathematics Preparation of School Teachers: The Journal, 4, 1–9. http://www.k-12prep.math.ttu.edu/journal/4.curriculum/burns01/article.pdf. Accessed October 10, 2017.
  26. Bütüner, S. Ö. (2015a). Impact of using history of mathematics on students mathematics success: A meta-analysis study. Mevlana International Journal of Education (MIJE), 5(2), 78–95. https://www.researchgate.net/publication/304790109_Impact_of_Using_History_of_Mathematics_on_Students’_Mathematics_Success_A_Meta-Analysis_Study. Accessed October 10, 2017.
  27. Bütüner, S. Ö. (2015b). Impact of using history of mathematics on students mathematics attitude: A meta-analysis study. European Journal of Science and Mathematics Education, 3(4), 337–349. http://files.eric.ed.gov/fulltext/EJ1107871.pdf. Accessed October 10, 2017.
  28. Calinger, R. (Ed.). (1996). Vita Mathematica, MAA Notes (Vol. 40). Washington, DC: The Mathematical Association of America.Google Scholar
  29. Clark, K. (2006). Investigating teachers’ experiences with the history of logarithms: A collection of five case studies (Unpublished doctoral dissertation). University of Maryland, College Park. http://drum.lib.umd.edu/handle/1903/3379. Accessed October 10, 2017.
  30. Clark, K. (2009). ‘In these numbers we use no fractions’: A classroom module on Stevin’s decimal fractions. Convergence, 6.  https://doi.org/10.4169/loci003333. http://www.maa.org/press/periodicals/convergence/in-these-numbers-we-use-no-fractions-a-classroom-module-on-stevins-decimal-fractions-overview-and. Accessed October 10, 2017.
  31. Clark, K. (2011). Reflections and revision: Evolving conceptions of a Using History course. In V. Katz & C. Tzanakis (Eds.), Recent developments on introducing a historical dimension in mathematics education. MAA Notes (Vol. 78, pp. 211–220). Washington DC: The Mathematical Association of America.Google Scholar
  32. Clark, K., & Thoo, J. B. (Eds.). (2014). The use of history of mathematics to enhance undergraduate mathematics instruction. PRIMUS, 24(8), 663–773.CrossRefGoogle Scholar
  33. Clark, K., Kjeldsen, T. H., Schorcht, S., Tzanakis, C., & Wang, X. (2016). History of mathematics in mathematics education: Recent developments. In L. Radford, F. Furinghetti, & T. Hausberger (Eds.), Proceedings of the 2016 ICME Satellite Meeting—HPM 2016 (pp. 135–179). Montpellier: IREM de Montpellier.Google Scholar
  34. Demattè, A. (2006). Fare matematica con i documenti storici: Una raccolta per la scuola secondaria di primo e secondo grado. Trento: Editore Provincia Autonoma di Trento—IPRASE del Trentino.Google Scholar
  35. Fasanelli, F., & Fauvel, J. (2006). History of the international study group on the relations between the history and pedagogy of mathematics: The first 25 years 1976–2000. In F. Furinghetti, S. Kaisjer, & C. Tzanakis (Eds.), Proceedings of HPM 2004 & ESU 4 (pp. x–xxviii). Iraklion: University of Crete.Google Scholar
  36. Fauvel, J., & van Maanen, J. (1997). The role of the history of mathematics in the teaching and learning of mathematics: Discussion document for an ICMI study (1997–2000). Educational Studies in Mathematics, 34, 255–259.CrossRefGoogle Scholar
  37. Fauvel, J., & van Maanen, J. (Eds.). (2000). History in mathematics education: The ICMI study. New ICMI Study Series (Vol. 6). Dordrecht: Kluwer.Google Scholar
  38. Filloy, E., Rojano, T., & Puig, L. (2008). Educational algebra. A theoretical and empirical approach. New York: Springer.Google Scholar
  39. Fried, Μ. (2001). Can mathematics education and history of mathematics coexist? Science & Education, 10(4), 391–408.CrossRefGoogle Scholar
  40. Fried, Μ. (2011). History of mathematics in mathematics education: problems and prospects. In É. Barbin, M. Kronfellner, & C. Tzanakis (Eds.), History and Epistemology in Mathematics Education: Proceedings of the 6th ESU (pp. 13–26). Wien: Holzhausen Verlag.Google Scholar
  41. Furinghetti, F. (1997). History of mathematics, mathematics education, school practice: Case studies linking different domains. For the Learning of Mathematics, 17(1), 55–61.Google Scholar
  42. Furinghetti, F. (2004). History and mathematics education: A look around the world with particular reference to Italy. Mediterranean Journal for Research in Mathematics Education, 3(1–2), 1–20.Google Scholar
  43. Furinghetti, F. (2007). Teacher education through the history of mathematics. Educational Studies in Mathematics, 66(2), 131–143.CrossRefGoogle Scholar
  44. Furinghetti, F. (2012). History and epistemology in mathematics education. In V. L. Hansen & J. Gray (Eds.), History of mathematics, in encyclopedia of life support systems (e-book). Oxford, UK: EOLSS Publishers. http://www.eolss.net/sample-chapters/c02/e6-132-65.pdf. Accessed October 10, 2017.
  45. Furinghetti, F., & Radford, L. (2008). Contrasts and oblique connections between historical conceptual developments and classroom learning in mathematics. In L. English (Ed.) & M. Bartolini Bussi, G. A. Jones, R. A. Lesh, B. Sriraman, & D. Tirosh (Assoc. Eds.), Handbook of international research in mathematics education (2nd ed., pp. 630–659). New York: Routledge.Google Scholar
  46. Furinghetti, F., Jahnke, H. N., & van Maanen, J. (Eds.). (2006a). Report No22/2006 on the mini-workshop on studying original sources in mathematics education. Oberwolfach: Mathematisches Forschungsinstitut Oberwolfach.Google Scholar
  47. Furinghetti, F., Kaisjer, S., & Tzanakis, C. (Eds.). (2006b). Proceedings of HPM 2004 & ESU 4. Iraklion: University of Crete. http://www.mathunion.org/fileadmin/ICMI/docs/HPM2004Proceedings.pdf. Accessed October 10, 2017.
  48. Furinghetti, F., Radford, L., & Katz, V. (Eds.). (2007). The history of mathematics in mathematics education: Theory and practice. Educational Studies in Mathematics, 66(2), 107–271.Google Scholar
  49. Gazit, A. (2013). What do mathematics teachers and teacher trainees know about the history of mathematics? International Journal of Mathematics Education in Science and Technology, 44(5), 501–512.CrossRefGoogle Scholar
  50. Glaubitz, M. R. (2010). Mathematikgeschichte lesen und verstehen: Eine theoretische und empirische Vergleichstudie (Unpublished doctoral dissertation). University of Duisburg-Essen, Duisburg, Essen. http://duepublico.uni-duisburg-essen.de/servlets/DocumentServlet?id=25416. Accessed October 10, 2017.
  51. Grattan-Guinness, I. (1973). Not from nowhere. History and philosophy behind mathematical education. International Journal of Mathematics Education in Science and Technology, 4, 421–453.CrossRefGoogle Scholar
  52. Grattan-Guinness, I. (1978). On the relevance of the history of mathematics to mathematical education. International Journal of Mathematics Education in Science and Technology, 9, 275–285.CrossRefGoogle Scholar
  53. Grattan-Guinness, I. (2004a). The mathematics of the past: Distinguishing its history from our heritage. Historia Mathematica, 31, 163–185.CrossRefGoogle Scholar
  54. Grattan-Guinness, I. (2004b). History or heritage? An important distinction in mathematics for mathematics education. The American Mathematical Monthly, 111(1), 1–12.CrossRefGoogle Scholar
  55. Guevara Casanova, I. (2015). L’ús de contextos històrics a l’aula de matemàtiques de secundària: El cas concret de la visualització en la connexió geometria-àlgebra. (Unpublished doctoral dissertation). University de Barcelona. http://hdl.handle.net/10803/301766. Accessed October 10, 2017.
  56. Hanna, G., Jahnke, N., & Pulte, H. (Eds.). (2010). Explanation and proof in mathematics: Philosophical and educational perspectives. New York: Springer.Google Scholar
  57. Horng, W.-S., & Lin, F.-L. (Eds.). (2000). Proceedings of the HPM conference on history in mathematics education: Challenges for a new millennium—A satellite meeting of ICME-9. Taipei: National Taiwan Normal University.Google Scholar
  58. Horton, L. B. (2011). High school teachers’ perception of the inclusion of history of mathematics in the classroom. (Unpublished doctoral dissertation). University of Massachusetts Lowell.Google Scholar
  59. Huntley, M. A., & Flores, A. (2010). A history of mathematics to develop prospective secondary mathematics teachers’ knowledge for teaching. PRIMUS, 20(7), 603–616.CrossRefGoogle Scholar
  60. International Study Group on the Relations Between the History and the Pedagogy of Mathematics. (HPM Group). (1978). Historia Mathematica, 5(1), 76.Google Scholar
  61. Jahnke, H. N., Arcavi, A., Barbin, É., Bekken, O., Furinghetti, F., El Idrissi, A., et al. (2000). The use of original sources in the mathematics classroom. In J. Fauvel & J. van Maanen (Eds.), History in mathematics education: The ICMI study. New ICMI Study Series (Vol. 6, pp. 291–328). Dordrecht: Kluwer.CrossRefGoogle Scholar
  62. Jankvist, U. T. (2007). Empirical research in the field of using history in mathematics education: Review of empirical studies in HPM2004 & ESU4. NOMAD, 12(3), 83–105.Google Scholar
  63. Jankvist, U. T. (2009a). Using history as a “goal” in mathematics education (Doctoral dissertation). IMFUFA, Roskilde University, Denmark. http://milne.ruc.dk/ImfufaTekster/pdf/464.pdf. Accessed July 26, 2017.
  64. Jankvist, U. T. (2009b). A categorization of the “whys” and “hows” of using history in mathematics education. Educational Studies in Mathematics, 71(3), 235–261.CrossRefGoogle Scholar
  65. Jankvist, U. T. (2013). History, applications, and philosophy in mathematics education: HAPh—A use of primary sources. Science & Education, 22(3), 635–656.CrossRefGoogle Scholar
  66. Jankvist, U. T., & Kjeldsen, T. H. (2011). New avenues for history in mathematics education: Mathematical competencies and anchoring. Science & Education, 20(9), 831–862.CrossRefGoogle Scholar
  67. Karam, R. (Ed.). (2015). Thematic issue: The interplay of physics and mathematics: Historical, philosophical and pedagogical considerations. Science & Education, 24(5–6), 487–805.Google Scholar
  68. Katz, V. (Ed.). (2000). Using history to teach mathematics. An international perspective. MAA Notes (Vol. 51). Washington, DC: The Mathematical Association of America.Google Scholar
  69. Katz, V., & Michalowicz, K. D. (Eds.). (2005). Historical modules for the teaching and learning of mathematics (e-book). Washington, DC: The Mathematical Association of America.Google Scholar
  70. Katz, V., & Tzanakis, C. (Eds.). (2011). Recent developments on introducing a historical dimension in mathematics education. MAA Notes (Vol. 78). Washington, DC: The Mathematical Association of America.Google Scholar
  71. Katz, V., Jankvist, U. T., Fried, M. N., & Rowlands, S. (Eds.). (2014). Thematic issue: History, philosophy and mathematics education. Science & Education, 23(1), 1–250.Google Scholar
  72. Kaye, E. (2008). The aims of and responses to a history of mathematics videoconferencing project for schools. Proceedings. of the British Society for Research into Learning Mathematics, 28(3), 66–71. http://www.bsrlm.org.uk/wp-content/uploads/2016/02/BSRLM-IP-28-3-12.pdf. Accessed October 10, 2017.
  73. Kjeldsen, T. H. (2011a). Uses of history in mathematics education: development of learning strategies and historical awareness. In M. Pytlet, T. Rowland, & E. Swoboda (Eds.), Proceedings of CERME 7 (pp. 1700–1709). Rzeszów: University of Rzeszów.Google Scholar
  74. Kjeldsen, T. H. (2011b). History in a competence based mathematics education: A means for the learning of differential equations. In V. Katz & C. Tzanakis (Eds.), Recent developments on introducing a historical dimension in mathematics education. MAA Notes (Vol. 78, pp. 165–173). Washington, DC: The Mathematical Association of America.Google Scholar
  75. Kjeldsen, T. H., & Blomhøj, M. (2012). Beyond motivation: history as a method for learning meta-discursive rules in mathematics. Educational Studies in Mathematics, 80(3), 327–349.CrossRefGoogle Scholar
  76. Knoebel, A., Laubenbacher, R., Lodder, J., & Pengelley, D. (2007). Mathematical masterpieces—Further chronicles by the explorers. New York: Springer.Google Scholar
  77. Leng, N. W. (2006). Effects of an ancient Chinese mathematics enrichment programme on secondary school students’ achievement in mathematics. International Journal of Science and Mathematics Education, 4(3), 485–511.Google Scholar
  78. Liu, P.-H. (2003). Do teachers need to incorporate the history of mathematics in their teaching? Mathematics Teacher, 96(6), 416–421.Google Scholar
  79. Mosvold, R., Jakobsen, A., & Jankvist, U. T. (2014). How mathematical knowledge for teaching may profit from the study of history of mathematics. Science & Education, 23(1), 47–60.CrossRefGoogle Scholar
  80. National Council of Teachers of Mathematics (NCTM). (1969). Historical topics for the mathematics classroom. Reston, VA: Author. (31st NCTM Yearbook, reprinted 1989).Google Scholar
  81. Niss, M., & Højgaard, T. (Eds.) (2011). Competencies and mathematical learning: Ideas and inspiration for the development of mathematics teaching and learning in Denmark. Roskilde: Roskilde University. http://milne.ruc.dk/imfufatekster/pdf/485web_b.pdf. Accessed October 10, 2017.
  82. Ostermann, A., & Wanner, G. (2012). Geometry by its history. Berlin: Springer.CrossRefGoogle Scholar
  83. Panasuk, R. M., & Horton, L. B. (2012). Integrating history of mathematics into curriculum: What are the chances and constraints? International Electronic Journal of Mathematics Education, 7(1), 3–20.Google Scholar
  84. Pengelley, D. (2011). Teaching with primary historical sources: Should it go mainstream? Can it? In V. Katz & C. Tzanakis (Eds.), Recent developments on introducing a historical dimension in mathematics education. MAA Notes (Vol. 78, pp. 1–8). Washington, DC: The Mathematical Association of America.Google Scholar
  85. Pengelley, D., & Laubenbacher, R. (2014). Teaching with original historical sources in mathematics, a resource web site. http://www.math.nmsu.edu/~history/. Accessed October 10, 2017.
  86. Percival, I. (2004). The use of cultural perspectives in the elementary school mathematics classroom. (Unpublished doctoral dissertation). Simon Fraser University, Canada. http://summit.sfu.ca/system/files/iritems1/7550/b34633303.pdf. Accessed October 10, 2017.
  87. Philippou, G. N., & Christou, C. (1998). The effect of a preparatory mathematics program in changing prospective teachers’ attitudes towards mathematics. Educational Studies in Mathematics, 35, 189–206.CrossRefGoogle Scholar
  88. Povey, H. (2014). ‘Walking in a foreign and unknown landscape’: Studying the history of mathematics in initial teacher education. Science & Education, 23(1), 143–157.CrossRefGoogle Scholar
  89. Radford, L., Bartolini Bussi, M. G., Bekken, O., Boero, P., Dorier, J.-L., Katz, V., et al. (2000). Historical formation and student understanding of mathematics. In J. Fauvel & J. van Maanen (Eds.), History in mathematics education: The ICMI Study. New ICMI Study Series (Vol. 6, pp. 143–170). Dordrecht: Kluwer.CrossRefGoogle Scholar
  90. Radford, L., Furinghetti, F., & Hausberger, T. (Eds.). (2016). Proceedings of the 2016 ICME Satellite Meeting—HPM 2016. Montpellier: IREM de Montpellier.Google Scholar
  91. Rogers, L. (2009). History, heritage and the UK mathematics classroom. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of CERME 6 (pp. 2781–2790). Lyon: Institut National de Recherche Pédagogique.Google Scholar
  92. Rogers, L. (2011). Mapping our heritage to the curriculum: Historical and pedagogical strategies for the professional development of teachers. In V. Katz & C. Tzanakis (Eds.), Recent developments on introducing a historical dimension in mathematics education. MAA Notes (Vol. 78, pp. 221–230). Washington, DC: The Mathematical Association of America.Google Scholar
  93. Schubring, G. (2006). Ontogeny and phylogeny. Categories for cognitive development. In F. Furinghetti, S. Kaisjer, & C. Tzanakis (Eds.), Proceedings of HPM 2004 & ESU 4 (pp. 329–339). Iraklion: University of Crete.Google Scholar
  94. Schubring, G. (2011). Conceptions for relating the evolution of mathematical concepts to mathematics learning—Epistemology, history, and semiotics interactive. Educational Studies in Mathematics, 77(1), 79–104.CrossRefGoogle Scholar
  95. Shell-Gellasch, A. (Ed.). (2008). Hands on history: A resource for teaching mathematics. MAA Notes (Vol. 72). Washington, DC: The Mathematical Association of America.Google Scholar
  96. Shell-Gellasch, A., & Jardine, D. (Eds.). (2005). From calculus to computers: Using the last 200 years of mathematics history in the classroom. MAA Notes (Vol. 68). Washington, DC: The Mathematical Association of America.Google Scholar
  97. Shell-Gellasch, A., & Jardine, D. (Eds.). (2011). Mathematical time capsules: Historical modules for the mathematics classroom. MAA Notes (Vol. 77). Washington, DC: The Mathematical Association of America.Google Scholar
  98. Shell-Gellasch, A., & Thoo, J. (2015). Algebra in context: Introductory algebra from origins to applications. Baltimore, MD: Johns Hopkins University Press.Google Scholar
  99. Siu, M.-K. (2006). No, I don’t use history of mathematics in my classroom. Why? In F. Furinghetti, S. Kaisjer & C. Tzanakis (Eds.), Proceedings. of HPM 2004 & ESU 4 (pp. 268–277). Iraklion: University of Crete.Google Scholar
  100. Siu, M. K. (2007). Some useful references for course MATH2001 (Development of Mathematical Ideas) Department of Mathematics, University of Hong Kong. http://hkumath.hku.hk/~mks/MATH2001ref.pdf. Accessed October 10, 2017.
  101. Siu, M.-K., & Tzanakis, C. (Eds.). (2004). The role of the history of mathematics in mathematics education. Mediterranean Journal for Research in Mathematics Education, 3(1–2), 1–166.Google Scholar
  102. Smestad, B. (2011). History of mathematics for primary school teacher education, or: Can you do something, even if you can’t do much? In V. Katz & C. Tzanakis (Eds.), Recent developments on introducing a historical dimension in mathematics education (Vol. 78, pp. 201–210). MAA Notes. Washington, DC: The Mathematical Association of America.Google Scholar
  103. Sriraman, B. (Ed.). (2012). Crossroads in the history of mathematics and mathematics education, MME Monographs (Vol. 12). Charlotte, NC: Information Age.Google Scholar
  104. Stedall, J. (Ed.). (2010). Special Issue: The history of mathematics in the classroom. BSHM Bulletin: Journal of the British Society for the History of Mathematics, 25(3), 131–179.CrossRefGoogle Scholar
  105. Stein, R. (2010). Math for teachers: An exploratory approach. Dubuque, IA: Kendall Hunt.Google Scholar
  106. Su, Y.-W. (2005). Mathematics teachers’ professional development: Integrating history of mathematics into teaching. (Unpublished doctoral dissertation). National Taiwan Normal University, Taipei (in Chinese).Google Scholar
  107. Swetz, F., Fauvel, J., Bekken, O., Johansson, B., & Katz, V. (Eds.). (1995). Learn from the masters! Washington, DC: The Mathematical Association of America.Google Scholar
  108. Thomaidis, Y., & Tzanakis, C. (2007). The notion of historical “parallelism” revisited: Historical evolution and students’ conception of the order relation on the number line. Educational Studies in Mathematics, 66, 165–183.CrossRefGoogle Scholar
  109. Tzanakis, C., & Thomaidis, Y. (2012). Classifying the arguments and methodological schemes for integrating history in mathematics education. In B. Sriraman (Ed.), Crossroads in the history of mathematics and mathematics education (pp. 247–294). Charlotte, NC: Information Age.Google Scholar
  110. Tzanakis, C., Arcavi, A., de Sá, C. C., Isoda, M., Lit, C.-K., Niss, M., et al. (2000). Integrating history of mathematics in the classroom: An analytic survey. In J. Fauvel & J. van Maanen (Eds.), History in mathematics education: The ICMI study. New ICMI Study Series (Vol. 6, pp. 201–240). Dordrecht: Kluwer.CrossRefGoogle Scholar
  111. van Amerom, B. A. (2002). Reinvention of early algebra. Developmental research on the transition from arithmetic to algebra (Doctoral dissertation). Retrieved from CD-ß Press, University of Utrecht. http://dspace.library.uu.nl/bitstream/handle/1874/874/full.pdf. Accessed October 10, 2017.
  112. Waldegg, G. (2004). Problem solving, collaborative learning and history of mathematics: Experiences in training in-service teachers. Mediterranean Journal for Research in Mathematics Education, 3(1–2), 63–71.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kathleen M. Clark
    • 1
  • Tinne Hoff Kjeldsen
    • 2
  • Sebastian Schorcht
    • 3
  • Constantinos Tzanakis
    • 4
  1. 1.School of Teacher EducationFlorida State UniversityTallahasseeUSA
  2. 2.Department of Mathematical SciencesUniversity of CopenhagenCopenhagen ØDenmark
  3. 3.Institut für Didaktik der MathematikJustus-Liebig-Universität GiessenGiessenGermany
  4. 4.Department of EducationUniversity of CreteRethymnonGreece

Personalised recommendations