Science of Taste

  • Adrian David CheokEmail author
  • Kasun Karunanayaka
Part of the Human–Computer Interaction Series book series (HCIS)


This chapter is a general review on the science of taste. Taste, is among the five long established senses classified under the sensory system. It is the key sensory sense through which we assess if a particular food is good or harmful. Taste is the sensation produced typically in the tongue when a substance reacts chemically with taste receptor cells situated on taste buds in the mouth.


  1. 1.
    Breslin PA, Huang L (2006) Human taste: peripheral anatomy, tastetransduction, and coding. In: Taste and smell, vol 63. Karger Publishers, pp. 152–190CrossRefGoogle Scholar
  2. 2.
    Breslin PA (2013) An evolutionary perspective on food and human taste. Current Biol 23(9):R409–R418CrossRefGoogle Scholar
  3. 3.
    Mattes RD (2011) Accumulating evidence supports a taste component for free fatty acids in humans. Phys Behav 104(4):624–631CrossRefGoogle Scholar
  4. 4.
    Roper SD (2013) Taste buds as peripheral chemosensory processors. In: Seminars in cell & developmental biology, vol 24. Elsevier, pp 71–79CrossRefGoogle Scholar
  5. 5.
    Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC (2005) ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310(5753):1495–1499CrossRefGoogle Scholar
  6. 6.
    Yee KK, Li Y, Redding KM, Iwatsuki K, Margolskee RF, Jiang P (2013) Lgr5-EGFP marks taste bud stem/progenitor cells in posterior tongue. Stem Cells 31(5):992–1000CrossRefGoogle Scholar
  7. 7.
    Fausto N, Campbell JS, Riehle KJ (2012) Liver regeneration. J Hepatol 57(3):692–694CrossRefGoogle Scholar
  8. 8.
    Cowart BJ, Yokomukai Y, Beauchamp GK (1994) Bitter taste in aging: compound-specific decline in sensitivity. Phys Behav 56(6):1237–1241CrossRefGoogle Scholar
  9. 9.
    Grill HJ, Norgren R (1978) Neurological tests and behavioral deficits in chronic thalamic and chronic decerebrate rats. Brain Res 143(2):299–312CrossRefGoogle Scholar
  10. 10.
    Steven Dowshen M (2013) What are taste budsGoogle Scholar
  11. 11.
    Eric H (1998) Smell-the nose knowsGoogle Scholar
  12. 12.
    Lange R (2017) Why do two great tastes sometimes not taste great together? (12)Google Scholar
  13. 13.
    Miller G (2011) Sweet here, salty there: evidence for a taste map in the mammalian brain. Science 333(6047):1213–1213CrossRefGoogle Scholar
  14. 14.
    Seidel HM, Stewart RW, Ball JW, Dains JE, Flynn JA, Solomon BS (2010) Mosby’s guide to physical examination-e-book. Elsevier Health SciencesGoogle Scholar
  15. 15.
    Scully SM (2014) The animals that taste only saltinessGoogle Scholar
  16. 16.
    Annett JM (1996) Olfactory memory: a case study in cognitive psychology. J Psychol 130(3):309–319CrossRefGoogle Scholar
  17. 17.
    Murray RG (1971) Ultrastructure of taste receptors. In: Taste. Springer, pp 31–50CrossRefGoogle Scholar
  18. 18.
    Smith DV, Margolskee RF (2001) Making sense of taste. Sci Am 284(3):32–39CrossRefGoogle Scholar
  19. 19.
    Norton N (2007) Parotid bed and glandGoogle Scholar
  20. 20.
    Shepherd R, Farleigh C, Land D (1984) Preference and sensitivity to salt taste as determinants of salt-intake. Appetite 5(3):187–197CrossRefGoogle Scholar
  21. 21.
    Delay RJ, Roper SD, Kinnamon JC (1986) Ultrastructure of mouse vallate taste buds: II. Cell types and cell lineage. J Comp Neurol 253(2):242–252CrossRefGoogle Scholar
  22. 22.
    Kinnamon JC, Taylor BJ, Delay RJ, Roper SD (1985) Ultrastructure of mouse vallate taste buds. I. Taste cells and their associated synapses. J Comp Neurol 235(1):48–60CrossRefGoogle Scholar
  23. 23.
    Kinnamon JC, Henzler DM, Royer SM (1993) Hvem ultrastructural analysis of mouse fungiform taste buds, cell types, and associated synapses. Microsc Res Tech 26(2):142–156CrossRefGoogle Scholar
  24. 24.
    Jahnke K, Baur P (1979) Freeze-fracture study of taste bud pores in the foliate papillae of the rabbit. Cell Tissue Res 200(2):245–256CrossRefGoogle Scholar
  25. 25.
    DeSimone JA, Ye Q, Heck GL (1993) Ion pathways in the taste bud and their significance for transduction. In: Ciba foundation symposium 179-The molecular basis of smell and taste transduction, Wiley Online Library, pp 218–234CrossRefGoogle Scholar
  26. 26.
    Miller IJ (1986) Variation in human fungiform taste bud densities among regions and subjects. Anat Rec 216(4):474–482CrossRefGoogle Scholar
  27. 27.
    Kobayashi K, Kumakura M, Yoshimura K, Takahashi M, Zeng J, Kageyama I, Kobayashi K, Hama N (2004) Comparative morphological studies on the stereo structure of the lingual papillae of selected primates using scanning electron microscopy. Ann Anat 186(5–6):525–530 (Anatomischer Anzeiger)CrossRefGoogle Scholar
  28. 28.
    Pumplin DW, Yu C, Smith DV (1997) Light and dark cells of rat vallate taste buds are morphologically distinct cell types. J Comp Neurol 378(3):389–410CrossRefGoogle Scholar
  29. 29.
    Azzali G (1997) Ultrastructure and immunocytochemistry of gustatory cells in man. Ann Anat 179(1):37–44 (Anatomischer Anzeiger)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Azzali G, Gennari P, Maffei G, Ferri T (1996) Vallate, foliate and fungiform human papillae gustatory cells. An immunocytochemical and ultrastructural study. Minerva Stomatol 45(9):363–379Google Scholar
  31. 31.
    Farbman AI, Hellekant G, Nelson A (1985) Structure of taste buds in foliate papillae of the rhesus monkey, macaca mulatta. Dev Dyn 172(1):41–56Google Scholar
  32. 32.
    Yee CL, Yang R, Böttger B, Finger TE, Kinnamon JC (2001) Type III cells of rat taste buds: immunohistochemical and ultrastructural studies of neuron-specific enolase, protein gene product 9.5, and serotonin. J Comp Neurol 440(1):97–108CrossRefGoogle Scholar
  33. 33.
    Yang R, Tabata S, Crowley HH, Margolskee RF, Kinnamon JC (2000) Ultrastructural localization of gustducin immunoreactivity in microvilli of type II taste cells in the rat. J Comp Neurol 425(1):139–151CrossRefGoogle Scholar
  34. 34.
    Paran N, Mattern CF, Henkin RI (1975) Ultrastructure of the taste bud of the human fungiform papilla. Cell Tissue Res 161(1):1–10CrossRefGoogle Scholar
  35. 35.
    Kinnamon JC, Sherman TA, Roper SD (1988) Ultrastructure of mouse vallate taste buds: III. Patterns of synaptic connectivity. J Comp Neurol 270(1):1–10CrossRefGoogle Scholar
  36. 36.
    Herness S, Zhao FL, Kaya N, Shen T, Lu SG, Cao Y (2005) Communication routes within the taste bud by neurotransmitters and neuropeptides. Chem Senses 30(suppl_1):i37–i38CrossRefGoogle Scholar
  37. 37.
    Farbman A (1980) Renewal of taste bud cells in rat circumvallate papillae. Cell Prolif 13(4):349–357CrossRefGoogle Scholar
  38. 38.
    Beidler LM, Smallman RL (1965) Renewal of cells within taste buds. J Cell Biol 27(2):263–272CrossRefGoogle Scholar
  39. 39.
    Conger AD, Wells MA (1969) Radiation and aging effect on taste structure and function. Radiat Res 37(1):31–49CrossRefGoogle Scholar
  40. 40.
    Stone LM, Tan SS, Tam PP, Finger TE (2002) Analysis of cell lineage relationships in taste buds. J Neurosci 22(11):4522–4529CrossRefGoogle Scholar
  41. 41.
    Lindemann B (1996) Taste reception. Physiol Rev 76(3):719–766CrossRefGoogle Scholar
  42. 42.
    Docherty BA, Alport LJ, Bhatnagar KP, Burrows AM, Smith TD (2010) Tongue morphology in infant and adult bushbabies (otolemur spp.). In: The evolution of exudativory in primates. Springer, pp 257–271CrossRefGoogle Scholar
  43. 43.
    Ranasinghe N, Cheok A, Nakatsu R, Do EYL (2013) Simulating the sensation of taste for immersive experiences. In: Proceedings of the 2013 ACM international workshop on Immersive media experiences, ACM, pp 29–34Google Scholar
  44. 44.
    Chiras DD (2012) Human body systems. Jones & Bartlett PublishersGoogle Scholar
  45. 45.
    Boron WF, Boulpaep EL (2012) Medical physiology, 2e updated edition e-book: with student consult online access. Elsevier Health SciencesGoogle Scholar
  46. 46.
    Ikeda K (2002) New seasonings. Chem Senses 27(9):847–849CrossRefGoogle Scholar
  47. 47.
    Potter NN, Hotchkiss JH (2012) Food science. Springer Science & Business MediaGoogle Scholar
  48. 48.
    Beauchamp GK, Cowart BJ (1987) Development of sweet taste. Sweetness, pp 127–140Google Scholar
  49. 49.
    Liem DG, Mennella JA (2003) Heightened sour preferences during childhood. Chem Senses 28(2):173–180CrossRefGoogle Scholar
  50. 50.
    Guyton AC (1991) Textbook of medical physiology, 8th edn. WB Saunders Company, Philadelphia, p 782Google Scholar
  51. 51.
    McLaughlin S, Margolskee RF (1994) The sense of taste. Am Sci 82(6):538–545Google Scholar
  52. 52.
    Breslin PA, Spector AC (2008) Mammalian taste perception. Curr Biol 18(4):R148–R155CrossRefGoogle Scholar
  53. 53.
    Scinska A, Koros E, Habrat B, Kukwa A, Kostowski W, Bienkowski P (2000) Bitter and sweet components of ethanol taste in humans. Drug Alcohol Depend 60(2):199–206CrossRefGoogle Scholar
  54. 54.
    Campbell MC, Ranciaro A, Zinshteyn D, Rawlings-Goss R, Hirbo J, Thompson S, Woldemeskel D, Froment A, Rucker JB, Omar SA et al (2013) Origin and differential selection of allelic variation at TAS2R16 associated with salicin bitter taste sensitivity in africa. Mol Biol Evol 31(2):288–302CrossRefGoogle Scholar
  55. 55.
    Sandell MA, Breslin PA (2006) Variability in a taste-receptor gene determines whether we taste toxins in foodGoogle Scholar
  56. 56.
    Wooding S, Bufe B, Grassi C, Howard MT, Stone AC, Vazquez M, Dunn DM, Meyerhof W, Weiss RB, Bamshad MJ (2006) Independent evolution of bitter-taste sensitivity in humans and chimpanzees. Nature 440(7086):930–934CrossRefGoogle Scholar
  57. 57.
    Jaco PT (2009) Why do two great tastes sometimes not taste great together? (May)Google Scholar
  58. 58.
    Lindemann B (2001) Receptors and transduction in taste. Nature 413(6852):219CrossRefGoogle Scholar
  59. 59.
    Simons PJ, Kummer JA, Luiken JJ, Boon L (2011) Apical CD36 immunolocalization in human and porcine taste buds from circumvallate and foliate papillae. Acta Histochem 113(8):839–843CrossRefGoogle Scholar
  60. 60.
    Laugerette F, Passilly-Degrace P, Patris B, Niot I, Febbraio M, Montmayeur JP, Besnard P (2005) CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Investig 115(11):3177CrossRefGoogle Scholar
  61. 61.
    Baillie A, Coburn C, Abumrad N (1996) Reversible binding of long-chain fatty acids to purified fat, the adipose CD36 homolog. J Memb Biol 153(1):75–81CrossRefGoogle Scholar
  62. 62.
    Cowart BJ (1998) The addition of CO2 to traditional taste solutions alters taste quality. Chem Senses 23(4):397–402CrossRefGoogle Scholar
  63. 63.
    Yarmolinsky D (2014) Mechanisms for taste sensation of carbonation. Columbia UniversityGoogle Scholar
  64. 64.
    Lee H, Macpherson LJ, Parada CA, Zuker CS, Ryba NJ (2017) Rewiring the taste system. Nature 548(7667):330–333CrossRefGoogle Scholar
  65. 65.
    Bachmanov AA, Boughter JD, Genetics of taste perception. eLSGoogle Scholar
  66. 66.
    Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS (2006) The receptors and cells for mammalian taste. Nature 444(7117):288CrossRefGoogle Scholar
  67. 67.
    Eny KM, Wolever TM, Corey PN, El-Sohemy A (2010) Genetic variation in TAS1R2 (ile191val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations. Am J Clin Nutr, 29836 (ajcn)Google Scholar
  68. 68.
    Fushan AA, Simons CT, Slack JP, Manichaikul A, Drayna D (2009) Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose. Curr Biol 19(15):1288–1293CrossRefGoogle Scholar
  69. 69.
    Kim Uk, Jorgenson E, Coon H, Leppert M, Risch N, Drayna D (2003) Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299(5610):1221–1225CrossRefGoogle Scholar
  70. 70.
    Hansen JL, Reed DR, Wright MJ, Martin NG, Breslin PA (2006) Heritability and genetic covariation of sensitivity to PROP, SOA, quinine HCL, and caffeine. Chem Senses 31(5):403–413CrossRefGoogle Scholar
  71. 71.
    Hayes JE, Sullivan BS, Duffy VB (2010) Explaining variability in sodium intake through oral sensory phenotype, salt sensation and liking. Physiol Behav 100(4):369–380CrossRefGoogle Scholar
  72. 72.
    Wise PM, Hansen JL, Reed DR, Breslin PA (2007) Twin study of the heritability of recognition thresholds for sour and salty taste. Chem Senses 32(8):749–754CrossRefGoogle Scholar
  73. 73.
    Shigemura N, Shirosaki S, Sanematsu K, Yoshida R, Ninomiya Y (2009) Genetic and molecular basis of individual differences in human umami taste perception. PLoS One 4(8):e6717CrossRefGoogle Scholar
  74. 74.
    Bachmanov AA, Beauchamp GK (2007) Taste receptor genes. Annu Rev Nutr 27:389–414CrossRefGoogle Scholar
  75. 75.
    Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H (2006) Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci 103(33):12569–12574CrossRefGoogle Scholar
  76. 76.
    Bachmanov A, Tordoff M, Beauchamp G (2000) Acid acceptance in 28 mouse strains. Chem Senses 25:600Google Scholar
  77. 77.
    Bachmanov A, Bosak N, Lin C, Matsumoto I, Ohmoto M, Reed D, Nelson, T (2014) Genetics of taste receptors. Curr Pharm Des 20(16):2669–2683CrossRefGoogle Scholar
  78. 78.
    Lugaz O, Pillias AM, Faurion A (2002) A new specific ageusia: some humans cannot taste l-glutamate. Chem Senses 27(2):105–115CrossRefGoogle Scholar
  79. 79.
    Chen QY, Alarcon S, Tharp A, Ahmed OM, Estrella NL, Greene TA, Rucker J, Breslin PA (2009) Perceptual variation in umami taste and polymorphisms in TAS1R taste receptor genes. Am J Clin Nutr 90(3):770S–779SCrossRefGoogle Scholar
  80. 80.
    Raliou M, Boucher Y, Wiencis A, Bézirard V, Pernollet JC, Trotier D, Faurion A, Montmayeur JP (2009) TAS1R1-TAS1R3 taste receptor variants in human fungiform papillae. Neurosci Lett 451(3):217–221CrossRefGoogle Scholar
  81. 81.
    Zuker CS, Ryba NJ, Nelson GA, Hoon MA, Chandrashekar J, Zhang Y (2008) Mammalian sweet taste receptors. US Patent 7,402,400, 22 July 2008Google Scholar
  82. 82.
    Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS (2002) An amino-acid taste receptor. Nature 416(6877):199–202CrossRefGoogle Scholar
  83. 83.
    Zhao H, Yang JR, Xu H, Zhang J (2010) Pseudogenization of the umami taste receptor gene TAS1R1 in the giant panda coincided with its dietary switch to bamboo. Mol Biol Evol 27(12):2669–2673CrossRefGoogle Scholar
  84. 84.
    Li X, Li W, Wang H, Cao J, Maehashi K, Huang L, Bachmanov AA, Reed DR, Legrand-Defretin V, Beauchamp GK et al (2005) Pseudogenization of a sweet-receptor gene accounts for cats’ indifference toward sugar. PLoS Genet 1(1):e3CrossRefGoogle Scholar
  85. 85.
    Jiang P, Josue J, Li X, Glaser D, Li W, Brand JG, Margolskee RF, Reed DR, Beauchamp GK (2012) Major taste loss in carnivorous mammals. Proc Natl Acad Sci 109(13):4956–4961CrossRefGoogle Scholar
  86. 86.
    Mennella JA, Pepino MY, Duke FF, Reed DR (2010) Age modifies the genotype-phenotype relationship for the bitter receptor TAS2R38. BMC Genet 11(1):60CrossRefGoogle Scholar
  87. 87.
    Matsuo R (2000) Role of saliva in the maintenance of taste sensitivity. Crit Rev Oral Biol Med 11(2):216–229CrossRefGoogle Scholar
  88. 88.
    Henrichon SJ (2017) Examples of sensory adaptationGoogle Scholar
  89. 89.
    Breslin P (2001) Human gustation and flavour. Flavour Fragr J 16(6):439–456CrossRefGoogle Scholar
  90. 90.
    Wolowich J (2017) Examples of sensory adaptationGoogle Scholar
  91. 91.
    Henkin R, Shallenberger R (1970) Aglycogeusia: the inability to recognize sweetness and its possible molecular basis. Nature 227(5261):965–966CrossRefGoogle Scholar
  92. 92.
    Fox AL (1931) Six in ten tasteblind to bitter chemical. Sci News Lett 9:249Google Scholar
  93. 93.
    Rutherfoord GS, Mathew B (1987) Xanthogranuloma of the choroid plexus of lateral ventricle, presenting with parosmia and parageusia. Br J Neurosurg 1(2):285–288CrossRefGoogle Scholar
  94. 94.
    Petzold G, Einhäupl K, Valdueza J (2003) Persistent bitter taste as an initial symptom of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 74(5):687–688CrossRefGoogle Scholar
  95. 95.
    Nocentini U, Giordano A, Castriota-Scanderbeg A, Caltagirone C (2004) Parageusia: an unusual presentation of multiple sclerosis. Eur Neurol 51(2):123–124CrossRefGoogle Scholar
  96. 96.
    Deems DA, Doty RL, Settle RG, Moore-Gillon V, Shaman P, Mester AF, Kimmelman CP, Brightman VJ, Snow JB (1991) Smell and taste disorders, a study of 750 patients from the university of pennsylvania smell and taste center. Arch Otolaryngol Head Neck Surg 117(5):519–528CrossRefGoogle Scholar
  97. 97.
    Hummel T, Nesztler C, Kallert S, Kobal G, Bende M, Nordin S (2001) Gustatory sensitivity in patients with anosmia. Chem Senses 26:118Google Scholar
  98. 98.
    Probst-Cousin S, Rickert C, Kunde D, Schmid K, Gullotta F (1997) Paraneoplastische limbische enzephalitis. Der Pathol 18(5):406–410CrossRefGoogle Scholar
  99. 99.
    Heckmann J, Lang C (2006) Neurological causes of taste disorders. In: Taste and smell, vol 63. Karger Publishers, pp 255–264CrossRefGoogle Scholar
  100. 100.
    Landis BN, Lacroix JS (2006) Postoperative/posttraumatic gustatory dysfunction. In: Taste and smell, vol 63. Karger Publishers, pp 242–254CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Imagineering InstituteIskandar PuteriMalaysia
  2. 2.City, University of LondonLondonUK

Personalised recommendations