Diffeomorphic Registration of Diffusion Mean Apparent Propagator Fields Using Dynamic Programming on a Minimum Spanning Tree

  • Kévin Ginsburger
  • Fabrice Poupon
  • Achille Teillac
  • Jean-Francois Mangin
  • Cyril Poupon
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


Diffeomorphic registration of diffusion MRI data is a non-convex optimization problem which raises issues both with respect to the choice of a model describing the dMRI data and the associated optimization method used to warp non-scalar images obtained from this model. In this paper, we take into account the full information available from the diffusion-weighted signal by using the local SHORE Mean Apparent Propagator (MAP) model. A discrete representation of the SHORE MAPs on a multiple-shell sampling of the displacement space is introduced, simplifying the comparison between MAPs which are no longer in different local tensor frames and enabling to perform a complete reorientation of the MAPs at each step of the registration. The diffeomorphic transformation is first optimized at the voxel scale using dynamic programming on a minimum spanning tree before taking advantage of the continuous diffeomorphic demons registration algorithm to match dMRI data at finer scales. The efficacy of this registration approach was assessed using diffusion MR datasets acquired on two healthy subjects to evaluate its capability to reach an optimal alignment of several well-known long white matter bundles.



This work was partially funded by the European FET Flagship Human Brain Project (SP2) FP7-ICT-2013-FET-F/604102.


  1. 1.
    Christiaens, D., Dhollander, T., Maes, F., Sunaert, S., Suetens, P.: The effect of reorientation of the fibre orientation distribution on fibre tracking. In: Proceedings of the CDMRI 2012, pp. 33–44 (2012)Google Scholar
  2. 2.
    Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)CrossRefGoogle Scholar
  3. 3.
    Duclap, D., Lebois, A., Schmitt, B., Riff, O., Guevara, P., Marrakchi-Kacem, L., Poupon, C.: Connectomist-2.0: a novel diffusion analysis toolbox for BrainVISA. In: Proceedings of the 29th ESMRMB Meeting, vol. 842 (2012)Google Scholar
  4. 4.
    Fick, R., Wassermann, D., Caruyer, E., Deriche, R.: MAPL: tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data. Neuroimage 134, 365–385 (2016)CrossRefGoogle Scholar
  5. 5.
    Geng, X., Ross, T.J., Gu, H., Shin, W., Zhan, W., Chao, Y.P., Lin, C., Schuff, N., Yang, Y.: Diffeomorphic image registration of diffusion MRI using spherical harmonics. IEEE Trans. Med. Imaging 30(3), 747–758 (2011). CrossRefGoogle Scholar
  6. 6.
    Guevara, P., Duclap, D., Poupon, C., Marrakchi-Kacem, L., Fillard, P., Le Bihan, D., Mangin, J.F.: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. Neuroimage 61(4), 1083–1099 (2012)CrossRefGoogle Scholar
  7. 7.
    Heinrich, M.P., Jenkinson, M., Brady, M., Schnabel, J.A.: Globally optimal deformable registration on a minimum spanning tree using dense displacement sampling. In: MICCAI, pp. 115–122. Springer, Berlin, Heidelberg (2012)Google Scholar
  8. 8.
    Hong, X., Arlinghaus, L.R., Anderson, A.W.: Spatial normalization of the fiber orientation distribution based on high angular resolution diffusion imaging data. Magn. Reson. Med. 61(6), 1520–1527 (2009)CrossRefGoogle Scholar
  9. 9.
    Nazmitdinov, R., Robledo, L., Egido, J.: Representation of three-dimensional rotations in oscillator basis sets. Nucl. Phys. A 596(1), 53–66 (1996).
  10. 10.
    Ozarslan, E., Koay, C.G., Shepherd, T.M., Komlosh, M.E., Irfanoglu, M.O., Pierpaoli, C., Basser, P.J.: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. NeuroImage 78, 16–32 (2013). CrossRefGoogle Scholar
  11. 11.
    Perrin, M., Poupon, C., Cointepas, Y., Rieul, B., Golestani, N., Pallier, C., Mangin, J.F.: Fiber tracking in q-ball fields using regularized particle trajectories. In: Biennial International Conference on Information Processing in Medical Imaging, pp. 52–63 (2005)Google Scholar
  12. 12.
    Raffelt, D., Tournier, J.D., Fripp, J., Crozier, S., Connelly, A., Salvado, O.: Symmetric diffeomorphic registration of FODs. NeuroImage 56(3), 1171–1180 (2011). CrossRefGoogle Scholar
  13. 13.
    Raffelt, D., Tournier, J.D., Crozier, S., Connelly, A., Salvado, O.: Reorientation of fiber orientation distributions using apodized point spread functions. Magn. Reson. Med. 67(3), 844–855 (2012)CrossRefGoogle Scholar
  14. 14.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1), 61–72 (2009)CrossRefGoogle Scholar
  15. 15.
    Yap, P., Chen, Y., An, H., Yang, Y., Gilmore, J.H., Lin, W., Shen, D.: SPHERE: SPherical Harmonic Elastic REgistration of HARDI data. Neuroimage 55(2), 545–556 (2011)CrossRefGoogle Scholar
  16. 16.
    Yeo, B.T., Vercauteren, T., Fillard, P., Peyrat, J.M., Pennec, X., Golland, P., Ayache, N., Clatz, O.: DT-REFinD: diffusion tensor registration with exact finite-strain differential. IEEE Trans. Med. Imaging 28(12), 1914–1928 (2009). CrossRefGoogle Scholar
  17. 17.
    Zhang, H., Yushkevich, P., Alexander, D., Gee, J.: Deformable registration of DT MR images with explicit orientation optimization. Med. Image Anal. 10, 764–785 (2006). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kévin Ginsburger
    • 1
    • 2
  • Fabrice Poupon
    • 3
    • 2
  • Achille Teillac
    • 1
    • 2
  • Jean-Francois Mangin
    • 3
    • 2
    • 4
  • Cyril Poupon
    • 1
    • 2
  1. 1.CEA DRF/ISVFJ/Neurospin/UNIRSGif-sur-YvetteFrance
  2. 2.Université Paris-SaclayOrsayFrance
  3. 3.CEA DRF/ISVFJ/Neurospin/UNATIGif-sur-YvetteFrance
  4. 4.CATIOrsayFrance

Personalised recommendations