Multi-Modal Analysis of Genetically-Related Subjects Using SIFT Descriptors in Brain MRI

  • Kuldeep Kumar
  • Laurent Chauvin
  • Matthew Toews
  • Olivier Colliot
  • Christian Desrosiers
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


So far, fingerprinting studies have focused on identifying features from single-modality MRI data, which capture individual characteristics in terms of brain structure, function, or white matter microstructure. However, due to the lack of a framework for comparing across multiple modalities, studies based on multi-modal data remain elusive. This paper presents a multi-modal analysis of genetically-related subjects to compare and contrast the information provided by various MRI modalities. The proposed framework represents MRI scans as bags of SIFT features, and uses these features in a nearest-neighbor graph to measure subject similarity. Experiments using the T1/T2-weighted MRI and diffusion MRI data of 861 Human Connectome Project subjects demonstrate strong links between the proposed similarity measure and genetic proximity.



Data were provided in part by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.


  1. 1.
    de Schotten, M.T., Bizzi, A., Dell’Acqua, F., Allin, M., Walshe, M., Murray, R., Williams, S.C., Murphy, D.G., Catani, M., et al.: Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. Neuroimage 54(1), 49–59 (2011)CrossRefGoogle Scholar
  2. 2.
    Finn, E.S., Shen, X., Scheinost, D., Rosenberg, M.D., Huang, J., Chun, M.M., Papademetris, X., Constable, R.T.: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18(11), 1664–1671 (2015)CrossRefGoogle Scholar
  3. 3.
    Geevarghese, R., Lumsden, D.E., Hulse, N., Samuel, M., Ashkan, K.: Subcortical structure volumes and correlation to clinical variables in parkinson’s disease. J. Neuroimaging 25(2), 275–280 (2015)CrossRefGoogle Scholar
  4. 4.
    Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)CrossRefGoogle Scholar
  5. 5.
    Goldman, S., O’Brien, L.M., Filipek, P.A., Rapin, I., Herbert, M.R.: Motor stereotypies and volumetric brain alterations in children with autistic disorder. Res. Autism Spectr. Disord. 7(1), 82–92 (2013)CrossRefGoogle Scholar
  6. 6.
    Kochunov, P., Jahanshad, N., Marcus, D., Winkler, A., Sprooten, E., Nichols, T.E., Wright, S.N., Hong, L.E., Patel, B., Behrens, T., et al.: Heritability of fractional anisotropy in human white matter: a comparison of human connectome project and ENIGMA-DTI data. Neuroimage 111, 300–311 (2015)CrossRefGoogle Scholar
  7. 7.
    Kumar, K., Desrosiers, C., Siddiqi, K., Colliot, O., Toews, M.: Fiberprint: A subject fingerprint based on sparse code pooling for white matter fiber analysis. NeuroImage 158, 242–259 (2017).
  8. 8.
    Mangin, J.F., Riviere, D., Cachia, A., Duchesnay, E., Cointepas, Y., Papadopoulos-Orfanos, D., Scifo, P., Ochiai, T., Brunelle, F., Regis, J.: A framework to study the cortical folding patterns. Neuroimage 23, S129–S138 (2004)CrossRefGoogle Scholar
  9. 9.
    Miranda-Dominguez, O., Mills, B.D., Carpenter, S.D., Grant, K.A., Kroenke, C.D., Nigg, J.T., Fair, D.A.: Connectotyping: model based fingerprinting of the functional connectome. PloS One 9(11), e111048 (2014)CrossRefGoogle Scholar
  10. 10.
    Mueller, S., Wang, D., Fox, M.D., Yeo, B.T., Sepulcre, J., Sabuncu, M.R., Shafee, R., Lu, J., Liu, H.: Individual variability in functional connectivity architecture of the human brain. Neuron 77(3), 586–595 (2013)CrossRefGoogle Scholar
  11. 11.
    Thompson, P.M., Ge, T., Glahn, D.C., Jahanshad, N., Nichols, T.E.: Genetics of the connectome. Neuroimage 80, 475–488 (2013)CrossRefGoogle Scholar
  12. 12.
    Toews, M., Wells, W.M.: How are siblings similar? how similar are siblings? large-scale imaging genetics using local image features. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 847–850 (2016)Google Scholar
  13. 13.
    Toews, M., Wells, W., Collins, D.L., Arbel, T.: Feature-based morphometry: discovering group-related anatomical patterns. NeuroImage 49(3), 2318–2327 (2010)CrossRefGoogle Scholar
  14. 14.
    Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, W.M.H., et al.: The wu-minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)CrossRefGoogle Scholar
  15. 15.
    Wachinger, C., Golland, P., Kremen, W., Fischl, B., Reuter, M., Initiative, A.D.N., et al.: Brainprint: a discriminative characterization of brain morphology. NeuroImage 109, 232–248 (2015)CrossRefGoogle Scholar
  16. 16.
    Yeh, F.C., Wedeen, V.J., Tseng, W.Y.I.: Generalized q-sampling imaging. IEEE Trans. Med. Imaging 29(9), 1626–1635 (2010)CrossRefGoogle Scholar
  17. 17.
    Yeh, F.C., Badre, D., Verstynen, T.: Connectometry: a statistical approach harnessing the analytical potential of the local connectome. NeuroImage 125, 162–171 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kuldeep Kumar
    • 1
    • 2
    • 3
  • Laurent Chauvin
    • 1
  • Matthew Toews
    • 1
  • Olivier Colliot
    • 2
    • 3
    • 4
  • Christian Desrosiers
    • 1
  1. 1.LIVIAÉcole de technologie supérieure (ÉTS)MontrealCanada
  2. 2.Aramis Project-Team, Inria ParisSorbonne Universités, UPMC UnivParisFrance
  3. 3.Inserm, CNRS, Institut du cerveau et la moelle (ICM) - Hôpital Pitié-SalpêtrièreBoulevard de l’hôpitalParisFrance
  4. 4.AP-HP, Departments of Neurology and NeuroradiologyHôpital Pitié-SalpêtrièreParisFrance

Personalised recommendations