Advertisement

Intoxication of Breathing Gases During Diving

  • Olaf Rusoke-Dierich
Chapter

Abstract

A part of diving accidents are caused by effects of breathing gases during diving. Normal air contains approx. 78% nitrogen (N2), 21% oxygen (O2), 0.9% argon (Ar), 0.03% carbon dioxide (CO2) and 0.01% helium (He), neon (Ne), krypton (Kr), hydrogen (H), xenon (X) and ozone (O3). All gases except oxygen and carbon dioxide are inert gases. Inert gases are only slightly chemical reactive. They don’t participate in physiological processes and hence will be at the same level expired as they were inhaled. Normally carbon monoxide isn’t included in the normal air. However, with insufficient burning of fossil fuels, carbon monoxide is produced and causes problems during diving.

References

  1. 1.
    Aranake A, Mahour GA, Avidan MS. Minimum alveolar concentration: ongoing relevance and clinical utility. Anaesthesia. 2013;68:512–22.CrossRefPubMedGoogle Scholar
  2. 2.
    Aubard Y, Magen I. Carbon monoxide poisoning in pregnancy. Bri J Obstet Gynocol. 2000;107:833–8.CrossRefGoogle Scholar
  3. 3.
    Bennett P. Inert gas narcosis and HPNS. In: Bove A, editor. Bove and Davis’ diving medicine. 4th ed. Philadelphia: WB Saunders; 2004. p. 225–40.Google Scholar
  4. 4.
    Bennett PB, Rostain JC. Inert gas narcosis. In: Brubakk AO, Neuman TS, editors. Bennett and Elliott’s physiology and medicine of diving. 5th ed. Toronto: Saunders; 2003. p. 300–22.Google Scholar
  5. 5.
    Bühlmann AA, Voelmm EB, Nussberger P. Tauchmedizin, Barotrauma, Gasembolie, Dekompensation, Dekompensationskrankheit. 5th ed. Berlin: Springer; 2002.Google Scholar
  6. 6.
    De Martino G, Luchetti M, De Rosa RC. Toxic effects of oxygen. In: Michael M, Marroni A, Longoni C, editors. Handbook of hyperbaric medicine. New York: Springer; 1996. p. 59–68.CrossRefGoogle Scholar
  7. 7.
    Donald KW. Oxygen poisoning in man. Brit MEC J. 1947;1:667–712. 712–717.CrossRefGoogle Scholar
  8. 8.
    Eger EI 2nd, Ionesco P, Laster MJ, et al. Minimum alveolar anaesthetic concentration of fluoridated alkanols in rats: relevance to theories of narcosis. Anaesth Analg. 1999;88:867–76.CrossRefGoogle Scholar
  9. 9.
    Hamilton K, Laliberte MF, Heslegrave R, Khan S. Visual/vestibular effects of inert gas narcosis. Ergonomics. 1993;36:891–8.  https://doi.org/10.1080/00140139308967954.CrossRefPubMedGoogle Scholar
  10. 10.
    Hamilton RW. Tolerating exposure to high oxygen levels: Repex and other methods. MTS J. 1989;23(4):19–25.Google Scholar
  11. 11.
    Hamilton RW. Tolerating oxygen exposure. SPUMS J. 1997;27(1):43–7.Google Scholar
  12. 12.
    Hampson NB, Dunford RG, Kramer CC, Norkool DM. Selection criteria utilized for hyperbaric oxygen treatment of carbon monoxide poisoning. J Emerg Med. 1995;13(2):227–31.CrossRefPubMedGoogle Scholar
  13. 13.
    Jain KK. Chapter 6 Oxygen toxicity. In: Textbook of hyperbaric medicine. 5th ed: Springer; 2017. p. 49–60.Google Scholar
  14. 14.
    Jain KK. High-pressure neurological syndrome (HPNS). Acta Neurol Scand. 1994;90:45–50.CrossRefPubMedGoogle Scholar
  15. 15.
    Karsowski MD, Harrison NL. General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999;55(10):1278–303.CrossRefGoogle Scholar
  16. 16.
    Kneller W, Hobbs M. Inert gas narcosis and the encoding and retrieval of long-term memory. Aviat Space Environ Med. 2013;84:1235–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Kneller W, Hobbs M. The levels of processing effect under nitrogen narcosis. Undersea Hyperb Med. 2013;40:239–45.PubMedGoogle Scholar
  18. 18.
    Koblin DD. Inhaled anesthetics: mechanisms of action. In: Miller R, editor. Anesthesia. 4th ed. New York: Churchill-Livingstone; 1994. p. 67–99.Google Scholar
  19. 19.
    Koblin DD, Fang Z, Eger E, Laster MJ, Gong D, Ionescu P, Halsey MJD, Trudell JR. Minimum alveolar concentrations of noble gases, nitrogen, and sulfur hexafluoride in rats: helium and neon as nonimmobilizers (nonanesthetics). Anesth Analg. August;87(2):419–24.Google Scholar
  20. 20.
    Lavoute C, Weiss M, Rostain JC. Alterations in nigral NMDA and GABAA receptor control of the striatal dopamine level after repetitive exposures to nitrogen narcosis. Exp Neurol. 2008;212:63–70.  https://doi.org/10.1016/j.expneurol.2008.03.001.CrossRefPubMedGoogle Scholar
  21. 21.
    Lavoute C, Weiss M, Sainty JM, Risso JJ, Rostain JC. Post effect of repetitive exposures to pressure nitrogen-induced narcosis on the dopaminergic activity at atmospheric pressure. Undersea Hyperb Med. 2008;35:21–5.PubMedGoogle Scholar
  22. 22.
    Moon R, Bryant S. Diving and the lung. SPUMS J. 1997;27(4):218–27.Google Scholar
  23. 23.
    National Oceanic and Atmospheric Administration. Diving for science and technology. In: NOAA diving manual. Washington, DC; 1990.Google Scholar
  24. 24.
    Overton CE. Studien über die Narkose zugleich ein Beitrag zur allgemeinen Pharmakologie. Jena: Gustav Fischer; 1901.Google Scholar
  25. 25.
    Rostain JC, Balon N. Recent neurochemical basis of inert gas narcosis and pressure effects. UHM 2006;33, No. 3-Neurochemical bases of narcosis and HPNS.Google Scholar
  26. 26.
    Rostain JC, Gardette-Chauffour MC, Naquet R. EEG and sleep disturbances during dives at 450 msw in helium-nitrogen-oxygen mixture. J Appl Physiol. 1997;83:575–82.CrossRefPubMedGoogle Scholar
  27. 27.
    Rostain JC, Lavoute C, Risso JJ, Vallee N, Weiss M. A review of recent neurochemical data on inert gas narcosis. Undersea Hyperb Med. 2011;38:49–59.PubMedGoogle Scholar
  28. 28.
    Sanders RD, Franks NP, Maze M. Xenon: no stranger to anaesthesia. BJA: Br J Anaesth. 2003;91(5):709–17.  https://doi.org/10.1093/bja/aeg232CrossRefPubMedGoogle Scholar
  29. 29.
    Schmidt RF, Lang F, Heckmann M, Physologie des Menschens, 31. Auflage, Springer; 2010Google Scholar
  30. 30.
    Thom SR, Elbuken ME. Oxygen-dependent antagonism of lipid peroxidation. Free Radic Biol Med. 1991;10:413–26.CrossRefPubMedGoogle Scholar
  31. 31.
    Tonner PH, Lutz H. Pharmakotherapie in der Anaesthesie und Intensivemedizin. Berlin: Springer; 2011.CrossRefGoogle Scholar
  32. 32.
  33. 33.
    Vaernes R, Bennett PB, Hammerborg D, Ellertsen B, Peterson RE, Toonjum S. Central nervous system reactions during heliox and trimix dives to 31 ATA. Undersea Biomed Res. 1982;9:1–14.PubMedGoogle Scholar
  34. 34.
    Wada S, Yokota A, Matsuoka S, Kadoya C, Mohri M. Effects of hyperbaric environment on human auditory middle latency response (MLR) and short latency somatosensory evoked potential (SSEP). J UOEH. 1989;11:441–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Weir JC. The molecular mechanisms of general anaesthesia: dissecting the GABAA receptor. Contin Educ Anaesth Crit Care Pain. 2006;6(2):49–53.CrossRefGoogle Scholar
  36. 36.
    Wood LD, Bryant AC. Exercise ventilators mechanics at increased ambient pressure. J Appl Physiol. 1978;44:231–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang M, Gao Y, Fang H. A new understanding of inert gas narcosis. Chin Phys B. 2016;25(1):013602.CrossRefGoogle Scholar
  38. 38.
    Zhou C, Liu J, Chen XD. General anaesthesia mediated by effects on ion channels. World J Crit Care Med. 2012;1(3):80–93.CrossRefPubMedPubMedCentralGoogle Scholar

Suggested Reading

  1. Behnke AR, Thompson RM, Motley EP. The psychologic effects from breathing air at 4 atmospheres pressure. Am J Physiol. 1935;112:554–8.Google Scholar
  2. Canlas CG, Cui T, Li L, Xu Y, Tang P. Anesthetic modulation of protein dynamics: insights from a NMR study. J Phys Chem B. 2008;112(45):14312–8.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cantor RS. The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biochemistry. 1997;36(9):2339–44.CrossRefPubMedGoogle Scholar
  4. Cantor RS. Breaking the Meyer-Overton rule: predicted effects of varying stiffness and interfacial activity on the intrinsic potency of anesthetics. Biophys J. 2001;80(5):2284–97.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Elayan IM, Axley MJ, Prasad PV, Ahlers ST, Auker CR. Effect of hyperbaric oxygen treatment on nitirc oxide and oxygen free radicals in rat brain. J Neurophysiol. 2000;83(4):2022–9.CrossRefPubMedGoogle Scholar
  6. Fang XL, Mai J, Choi ET, Wang H, Yang X. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory disease and cancers. J Hematol Oncol. 2013;6:19.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Farmery S, Sykes O. Neurological oxygen toxicity. Emerg Med J. 2012;29:851–2.  https://doi.org/10.1136/emermed-2011-200538.CrossRefPubMedGoogle Scholar
  8. Fothergill DM, Hedges D, Morrison JB. Effects of CO2 and N2 partial pressures on cognitive and psychomotor performance. Undersea Biomed Res. 1991;18:1–19.PubMedGoogle Scholar
  9. Fowler B, Ackles KN, Porlier G. Effects of inert gas narcosis on behavior—a critical review. Undersea Biomed Res. 1985;12:369–402.PubMedGoogle Scholar
  10. Franks NP, Lieb WR. Do general anaesthetics act by competitive binding to specific receptors? Nature. 1984;310(16):599–601.CrossRefPubMedGoogle Scholar
  11. Franks NP, Lieb WR. Molecular and cellular mechanisms of general anesthesia. Nature. 1994;367(17):607–14. Franks NP, Lieb WR .Where do general anaesthetics act? Nature. 1978;274(5669):339–42.Google Scholar
  12. Franks NP, Lieb WR. Mapping of general anesthetic target sites provides a molecular basis for cutoff effects. Nature. 1985;316(6026):349–51.CrossRefPubMedGoogle Scholar
  13. Franks NP, Lieb WR. Molecular and cellular mechanisms of general anesthesia. Nature. 1994;367(17):607–14.CrossRefPubMedGoogle Scholar
  14. Franks NP, Lieb WR. Stereospecific effects of inhalational general anesthetic optical isomers on nerve ion channels. Science. 1991;254(5030):427–30.CrossRefPubMedGoogle Scholar
  15. Geers C, Gros G. Carbon dioxide transport and carbonic anhydrases in blood and muscle. Physiol Rev. 2000;80(2):681–715.CrossRefPubMedGoogle Scholar
  16. Gelfand R, Lambertsen CJ, Peterson RE. Human respiratory control at high ambient pressures and inspired gas densities. J Appl Physiol. 1980;48:528–39.CrossRefPubMedGoogle Scholar
  17. Grover CA, Grover DH. Albert Behnke: nitrogen narcosis. J Emerg Med. 2014;46:225–7.CrossRefPubMedGoogle Scholar
  18. Hamilton K, Laliberte MF, Fowler B. Dissociation of the behavioral and subjective components of nitrogen narcosis and diver adaptation. Undersea Hyperb Med. 1995;22:41–9.PubMedGoogle Scholar
  19. Harless E, von Bibra E. Die Ergebnisse der Versuche über die Wirkung des Schwefeläthers. Erlangen: Verlag von Carl Heyder; 1847.Google Scholar
  20. Hobbs M, Higham PA, Kneller W. Memory and metacognition in dangerous situations: investigating cognitive impairment from gas narcosis in undersea divers. Hum Factors. 2014;56:696–709.CrossRefPubMedGoogle Scholar
  21. Hobbs M, Kneller W. Effect of nitrogen narcosis on free recall and recognition memory in open water. Undersea Hyperb Med. 2009;36:73–81.PubMedGoogle Scholar
  22. Hobbs M. Subjective and behavioural responses to nitrogen narcosis and alcohol. Undersea Hyperb Med. 2008;35:175–84.PubMedGoogle Scholar
  23. Hugh C, Jr H. Molecular targets of general anaesthetics in the nervous system, Chapter 2. In: Supressing the mind, contemporary clinical neuroscience: Humana Press; 2010.Google Scholar
  24. Janoff AS, Miller KW. A critical assessment of the lipid theories of general anaesthetic action. Biol Membr. 1982;4(1):417–76.Google Scholar
  25. Janoff AS, Pringle MJ, Miller KW. Correlation of general anesthetic potency with solubility in membranes. Biochim Biophys Acta. 1981;649(1):125–8.CrossRefPubMedGoogle Scholar
  26. Kandel L, Chortkoff BS, Sonner J, Laster MJ, Eger EI. Nonanesthetics can suppress learning. Anesth Analg. 1996;82(2):321–6.PubMedGoogle Scholar
  27. Kiessling RJ, Maag CH. Performance impairment as a function of nitrogen narcosis. Rep US Navy Exp Diving Unit. 1960:1–19.Google Scholar
  28. Koblin DD, Chortkoff BS, Laster MJ, Eger EI II, Halsey MJ, Ionescu P. Polyhalogenated and perfluorinated compounds that disobey the Meyer-Overton hypothesis. Anesth Analg. 1994;79(6):1043–8.CrossRefPubMedGoogle Scholar
  29. LaBella FS, Stein D, Queen G. Occupation of the cytochrome P450 substrate pocket by diverse compounds at general anesthesia concentrations. Eur J Pharmacol. 1998;358(2):177–85.CrossRefPubMedGoogle Scholar
  30. Lawrence JH, Loomis WF, Tobias CA, Turpin FH. Preliminary observation on the narcotic effect of xenon with a review of values for solubilities of gases in water and oils. J Physiol. 1945;105:197–204.CrossRefGoogle Scholar
  31. Lerner RA. A hypothesis about the endogenous analogue of general anesthesia. Proc Natl Acad Sci U S A. 1997;94(25):13375–7.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Liu J, Laster MJ, Taheri S, Eger EI, Koblin DD, Halsey MJ. Is there a cutoff in anesthetic potency for the normal alkanes? Anesth Analg. 1993;77(1):12–8.CrossRefPubMedGoogle Scholar
  33. Liu R, Loll PJ, Eckenhoff RG. Structural basis for high-affinity volatile anesthetic binding in a natural 4-helix bundle protein. FASEB J. 2005;19(6):567–76.CrossRefPubMedGoogle Scholar
  34. Lofdahl P, Andersson D, Bennett M. Nitrogen narcosis and emotional processing during compressed air breathing. Aviat Space Environ Med. 2013;84:17–21.CrossRefPubMedGoogle Scholar
  35. Lugli AK, Yost CS, Kindler CH. Anaesthetic mechanisms: update on the challenge of unravelling the mystery of anaesthesia. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778226/#!po=43.7500. Accessed 23.7.2017.
  36. Lüllmann H, Mohr K, Ziegler A. Taschenatlas der Pharmakologie, 6. Auflage, Thieme Stuttgart; 2008.Google Scholar
  37. Ma D, Brandon NR, Cui T, Bondarenko V, Canlas C, Johansson JS, Tang P, Xu Y. Four-α-helix bundle with designed anesthetic binding pockets. Part I: structural and dynamical analyses. Biophys J. 2008;94(11):4454–63.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mathieu D, Nolf M, Durocher A, et al. Acute carbon monoxide poisoning. Risk of late sequelae and treatment by hyperbaric oxygen. J Toxicol Clin Toxicol. 1985.Google Scholar
  39. Mekjavic IB, Savic SA, Eiken O. Nitrogen narcosis attenuates shivering thermogenesis. J Appl Physiol. 1995;78:2241–4.CrossRefPubMedGoogle Scholar
  40. Meyer HH. Welche eigenschaft der anasthetica bedingt ihre narkotische Wirkung? Arch Exp Pathol Pharmakol. 1899;42(2–4):109–18.CrossRefGoogle Scholar
  41. Meyer HH. Zur Theorie der Alkoholnarkose. Arch Exp Pathol Pharmacol. 1899;42(2–4):109–18.CrossRefGoogle Scholar
  42. Meyer KH. Contributions to the theory of narcosis. Trans Faraday Soc. 1937;33:1062–8.CrossRefGoogle Scholar
  43. Mihic SJ, Ye Q, Wick MJ, Koltchine VV, Krasowski MD, Finn SE, Mascia MP, Valenzuela CF, Hanson KK, Greenblatt EP, Harris RA, Harrison NL. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature. 1997;389(6649):385–9.Google Scholar
  44. Miller JW, Bachrach AJ, Walsh JM. Assessment of vertical excursions and open-sea psychological performance at depths to 250 fsw. Undersea Biomed Res. 1976;3(4):339–49.PubMedGoogle Scholar
  45. Miller KW. The nature of the site of general anesthesia. Int Rev Neurobiol. 1985;27(1):1–61.PubMedGoogle Scholar
  46. Miller KW, Paton WD, Smith RA, Smith EB. The pressure reversal of general anesthesia and the critical volume hypothesis. Mol Pharmacol. 1973;9(2):131–43.PubMedGoogle Scholar
  47. Mitchell SJ, Cronjé FJ, Meintjes WA, Britz HC. Fatal respiratory failure during a “technical” rebreather dive at extreme pressure. Aviat Space Environ Med. 2007;78(2):81–6.PubMedGoogle Scholar
  48. Mohr JT, Gribble GW, Lin SS, Eckenhoff RG, Cantor RS. Anesthetic potency of two novel synthetic polyhydric alkanols longer than the n-alkanol cutoff: evidence for a bilayer-mediated mechanism of anesthesia? J Med Chem. 2005;48(12):4172–6.CrossRefPubMedGoogle Scholar
  49. Morrison JB, Florio JT, Butt WS. Effects of CO2 insensitivity and respiratory pattern on respiration in divers. Undersea Biomed Res. 1981;8:209–17.PubMedGoogle Scholar
  50. Mullins LI. Some physical mechanisms in narcosis. Chem Rev. 1954;54(2):289–323.CrossRefGoogle Scholar
  51. Pringle MJ, Brown KB, Miller KW. Can the lipid theories of anesthesia account for the cutoff in anesthetic potency in homologous series of alcohols? Mol Pharmacol. 1981;19(1):49–55.PubMedGoogle Scholar
  52. Raub JA, Benignus VA. Carbon monoxide and the nervous system. Neurosci Biobehav Rev. 2002;26(8):925–40.CrossRefPubMedGoogle Scholar
  53. Rogers WH, Moeller G. Effect of brief, repeated hyperbaric exposures on susceptibility to nitrogen narcosis. Undersea Biomed Res. 1989;16:227–32.PubMedGoogle Scholar
  54. Slater SJ, Cox KJ, Lombardi JV, Ho C, Kelly MB, Rubin E, Stubbs CD. Inhibition of protein kinase C by alcohols and anaesthetics. Nature. 1993;364(6432):82–4.CrossRefPubMedGoogle Scholar
  55. Taheri S, Laster MJ, Liu J, Eger EI II, Halsey MJ, Koblin DD. Anesthesia by n-alkanes not consistent with the Meyer-Overton hypothesis: Determinations of solubilities of alkanes in saline and various lipids. Anesth Analg. 1993;77(1):7–11. Tang P, Xu Y. Large-scale molecular dynamics simulations of general anesthetic effects on the ion channel in the fully hydrated membrane: the implication of molecular mechanisms of general anesthesia. Proc. Natl. Acad. Sci. U.S.A. 2002;99(25):16035–40.Google Scholar
  56. Talpalar AE. High pressure neurological syndrome. Rev Neurol. 2007;45(10):631–6.PubMedGoogle Scholar
  57. Trudell JR. A unitary theory of anesthesia based on lateral phase separations in nerve membranes. Anesthesiology. 1977;46(1):5–10.CrossRefPubMedGoogle Scholar
  58. Trudell JR, Koblin DD, Eger EI 2nd. A molecular description of how noble gases and nitrogen bind to a model site of anesthetic action. Anesth Analg. 1998;87:411–8.PubMedGoogle Scholar
  59. Unsworth IP. Inert gas narcosis—an introduction. Postgrad Med J. 1966;42:378–85.CrossRefPubMedCentralGoogle Scholar
  60. Vaes WHJ, Ramos EU, Hamwijk C, van Holsteijn I, Blaauboer BJ, Seinen W, Verhaar HJM, Hermens JLM. Solid phase microextraction as a tool to determine membrane/water partition coefficients and bioavailable concentrations in in vitro systems. Chem Res Toxicol. 1997;10(10):1067–72.CrossRefPubMedGoogle Scholar
  61. van Wijk CH, Meintjes WA. Complex tactile performance in low visibility: the effect of nitrogen narcosis. Diving Hyperb Med. 2014;44:65–9.PubMedGoogle Scholar
  62. Varene P, Vieillefond H, Lemaire C, Saumon G. Expiratory flow volume curves and ventilation limitation of muscular exercise at depth. Aerosp Med. 1974;45:161–6.PubMedGoogle Scholar
  63. Waters RM. Toxic effects of carbon dioxide. New Orleans Med Surg J. 1937;90:219–24.Google Scholar
  64. Yogev D, Mekjavi IB. Behavioral temperature regulation in humans during mild narcosis induced by inhalation of 30% nitrous oxide. Undersea Hyperb Med. 2009;36:361–73.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Olaf Rusoke-Dierich
    • 1
  1. 1.Townsville Australia

Personalised recommendations