Generating Phase-Shifts and Radial Integrals for Multiple Scattering Codes

Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 204)

Abstract

A brief derivation of the cross section in the independent particle approximation for some of the spectroscopies treated in the msspec program package is presented . We solve the related Schrödinger equation with a complex energy-dependent effective potential in the framework of multiple scattering theory to write the cross-section for photoemission and photoabsorption in a physically transparent way that provides insight in their interpretation and analysis. Relativistic corrections are also implemented. In order to be able to apply this theory to a wide variety of systems we use a kind of all-purpose optical potential, depending only on the local density of the system under investigation, and discuss its merits and drawbacks. A Green’s function approach is shown to be necessary to write the photoabsorption cross section in the case of complex potential.

References

  1. 1.
    D. Sébilleau, C.R. Natoli, M. Gavaza, H. Zhao, F. Da Pieve, K. Hatada, Comp. Phys. Commun. 182, 2567–2579 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    D. Sébilleau, R. Gunnella, Z.-Y. Wu, S. Di Matteo, C.R. Natoli, J. Phys.: Condens. Matter 18, R175–R230 (2006)Google Scholar
  3. 3.
    L.F. Canto, M.S. Hussein, Scattering Theory of Molecules. Atoms and Nuclei (World Scientific, Singapore, 2013)CrossRefMATHGoogle Scholar
  4. 4.
    G. Breit, H. Bethe, Phys. Rev. 93, 888 (1954)ADSCrossRefGoogle Scholar
  5. 5.
    B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules (Longman, London, 1983)Google Scholar
  6. 6.
    R.V. Vedrinskii, V.L. Kraizman, A.A. Novakovich, VSh Machavariani, J. Phys.: Condens. Matter 4, 6155–6169 (1992)ADSGoogle Scholar
  7. 7.
    K. Hatada, K. Hayakawa, M. Benfatto, C.R. Natoli, J. Phys.: Condens. Matter 22, 185501 (24pp) (2010)Google Scholar
  8. 8.
    D. Sébilleau, C.R. Natoli, J. Phys.: Conf. Ser. 190, 012002 (2009)Google Scholar
  9. 9.
    C.R. Natoli, M. Benfatto, S. Doniach, Phys. Rev. A 34, 4682–4694 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    C.R. Natoli, M. Benfatto, S. Della Longa, K. Hatada, J. Synchrotron Rad. 10, 26–42 (2003)CrossRefGoogle Scholar
  11. 11.
    A.L. Ankudinov, S.I. Zabinsky, J.J. Rehr, Comp. Phys. Commun. 98, 359–364 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    P. Löwdin, Adv. Phys. 5, 3–172 (1956)CrossRefGoogle Scholar
  13. 13.
    L.F. Mattheiss, Phys. Rev. 133, A1399–A1403 (1964)ADSCrossRefGoogle Scholar
  14. 14.
    J.G. Norman, Mol. Phys. 81, 1191–1198 (1974)Google Scholar
  15. 15.
    I.T. Wille, P.J. Durham, P.A. Sterne, J. Phys. (Paris) 47(C8), 43–45 (1986)CrossRefGoogle Scholar
  16. 16.
    L. Hedin, S. Lundqvist, Solid State Phys. 23, 1–181 (1969)Google Scholar
  17. 17.
    P.A. Lee, G. Beni, Phys. Rev. B 15, 2862–2883 (1977)ADSCrossRefGoogle Scholar
  18. 18.
    J.J. Kas, A.P. Sorini, M.P. Prange, L.W. Cambell, J.A. Soininen, Phys. Rev. B 76, 195116 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    J. Mustre de Leon, J.J. Rehr, S.I. Zabinsky, R.C. Albers, Phys. Rev. B 44, 4146 (1991)Google Scholar
  20. 20.
    J.H. Wood, A.M. Boring, Phys. Rev. B 18, 2701 (1978)ADSCrossRefGoogle Scholar
  21. 21.
    R. Resta, Phys. Rev. B 16, 2717–2722 (1977)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LNF-INFNFrascatiItaly
  2. 2.Institut de Physique de Rennes (IPR)Univ Rennes, CNRS, UMR 6251RennesFrance

Personalised recommendations