Towards Accurate and Large-Scale Density-Functional Calculations with the Korringa–Kohn–Rostoker Method

Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 204)

Abstract

Development of advanced 21st century applications profits increasingly from a basic quantum-mechanical understanding of material properties. Often, density-functional theory is used to reduce the work to the solution of simple effective one-particle equations. Nevertheless, for all but the smallest systems, considerable computer resources are required and accurate calculations for large systems are difficult. One attempt to overcome this problem is kkrnano, a computer code recently developed in Jülich, which is based on the multiple-scattering Korringa–Kohn–Rostoker (KKR) Green-function method. In the present contribution it will be described how this code enables to treat systems with many thousand atoms and how the use of non-local angular projection potentials provides new insight for obtaining accurate forces and total energies.

Notes

Acknowledgements

The author gratefully thanks P.F. Baumeister, S. Blügel, M. Bolten, M. Bornemann, P.H. Dederichs, T. Hater, T. Fukushima, R. Kováčik, M. Ogura, D. Pleiter, E. Rabel, A. Thiess, I. Yafneh, who have contributed to the development of kkrnano, and acknowledges computing time granted by the JARA-HPC Vergabegremium and provided on the JARA-HPC Partition part of the supercomputer JUQUEEN at Forschungszentrum Jülich.

References

  1. 1.
    E. Wigner, F. Seitz, Phys. Rev. 43, 804–810 (1933)ADSCrossRefGoogle Scholar
  2. 2.
    N. Papanikolaou, R. Zeller, P.H. Dederichs, J. Phys. Condens. Matter 14, 2799–2823 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    R. Zeller, J. Phys. Condens. Matter 20, 294215 (2008)CrossRefGoogle Scholar
  4. 4.
    A. Thiess, R. Zeller, M. Bolten, P.H. Dederichs, S. Blügel, Phys. Rev. B 85, 235103 (2012)Google Scholar
  5. 5.
    K. Wildberger, P. Lang, R. Zeller, P.H. Dederichs, Phys. Rev. B 52, 11502 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    R.W. Freund, SIAM, J. Sci. Comput. 14, 470–482 (1993)MathSciNetCrossRefGoogle Scholar
  7. 7.
    R. Zeller, P.H. Dederichs, B. Újfalussy, L. Szunyogh, P. Weinberger, Phys. Rev. B 52, 8807–8812 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    R. Zeller, J. Phys. C 20, 2347–2360 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    R. Zeller, J. Phys. Condens. Matter 25, 105505 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    R. Zeller, J. Phys. Condens. Matter 27, 306301 (2015)CrossRefGoogle Scholar
  11. 11.
    D.M.C. Nicholson, W.A. Shelton, J. Phys. Condens. Matter 14, 5601–5608 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    A. Alam, S.N. Khan, B.G. Wilson, D.D. Johnson, Phys. Rev. B 85, 045105 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Advanced Simulation, Forschungszentrum Jülich GmbH and JARAJülichGermany

Personalised recommendations