Ballistic Electron Emission Microscope by Real Space Multiple Scattering Theory

Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 204)

Abstract

Ballistic Electron Emission Microscope (BEEM) is a microscope to investigate Schottky barrier based on Scanning Tunneling Microscope (STM) setup. The theoretical scheme widely used for STM is mostly focusing on an electric current from the tip tunneling through the vacuum to the sample surface. However, this model is not applicable for BEEM, since in the BEEM case, electrons tunneling through the vacuum are transported in the material over a very long range. We propose a theoretical model based on the real space full potential multiple scattering theory in order to describe this transport phenomena within the one electron picture. It is analogous to the theoretical model of angle resolved photoemission, except that the electron is emitted from the tip. This framework describes the tunneling effect and the multiple scattering in the tip and the sample and between them. Moreover this theory can be applied for non-Hermitian Hamiltonian, so that the loss of electrons at the Schottky barrier can be mimicked by introducing an imaginary part in the optical potential.

Notes

Acknowledgements

Parts of this work have been funded by European FP7 MSNano network under Grant Agreement No. PIRSES-GA-2012-317554 and COST Action MP1306 EUSpec and the European FP7 MS-BEEM (Grant Agreement No. PIEF-GA-2013-625388).

References

  1. 1.
    W. Kaiser, L. Bell, Phys. Rev. Lett. 60, 1406–1409 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    L.D. Bell, W.J. Kaiser, Phys. Rev. Lett. 61, 2368 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    W. Yi, A.J. Stollenenwerk, V. Narayanamurti, Surf. Sci. Rep. 64, 169–190 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    M. Hervé, S. Tricot, Y. Claveau, G. Delhaye, S. Di Matteo, P. Schieffer, P. Turban, Appl. Phys. Lett. 103, 202408 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    P.L. de Andres, F.J. Garcia-Vidal, K. Reuter, F. Flores, Prog. Surf. Sci. 66, 3 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Claveau, Ph.D. thesis, University of Rennes 1, France (2014). arXiv:1501.06458 [cond-mat.mes-hall]
  7. 7.
    J. Xu, K. Hatada, D. Sébilleau, L. Song. arXiv:1604.04846 [quant-ph]
  8. 8.
    J. Xu, P. Krüger, C.R. Natoli, K. Hayakawa, Z. Wu, K. Hatada, Phys. Rev. B 92, 125408 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    K. Hatada, K. Hayakawa, M. Benfatto, C.R. Natoli, Phys. Rev. B 76, 060102(R) (2007)ADSCrossRefGoogle Scholar
  10. 10.
    K. Hatada, K. Hayakawa, M. Benfatto, C.R. Natoli, J. Phys. Condens. Matter 22, 185501 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    G. Breit, H.A. Bethe, Phys. Rev. 93, 888–890 (1954)ADSCrossRefGoogle Scholar
  12. 12.
    N. Komiya, K. Hatada, F. Ota, P. Krüger, T. Fujikawa, K. Niki, J. Electron Spectrosc. Relat. Phenom. (2017). (submitted)Google Scholar
  13. 13.
    C.R. Natoli, M. Benfatto, C. Brouder, M.F. Ruiz-López, D.L. Foulis, Phys. Rev. B 42, 1944–1968 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department ChemieLudwig-Maximilians-Universität MünchenMunich, BavariaGermany
  2. 2.Institut de Physique de Rennes (IPR)Univ Rennes, CNRS, UMR 6251RennesFrance

Personalised recommendations