Physiopathology of Right Heart Failure

  • Cătălina Arsenescu-Georgescu
  • Carmen Elena Pleşoianu
  • Delia Şălaru


The physiopathology of the right heart failure is tightly linked to the particular features of the right ventricle (RV). Its small dimension along with the specific geometry ensures the compliance of the RV which is able to accommodate extreme variations in venous return. Myocardial dysfunction, pressure overload, volume overload, and preload reduction are the main mechanisms of right heart failure. Due to its particular pattern of contraction, the RV better adapts to volume overload than to pressure overload. There are several aspects underlying the relative resistance of the RV to ischemia: its lower oxygen demand, dual coronary supply, and perfusion during both systole and diastole. Another key role in the pathophysiology of RV dysfunction is the ventricular interdependence. In case of acute pressure or volume overload, the RV dilates shifting the interventricular septum to the left, which along with the increased pericardial constraint determines low cardiac output. As the filling pressures rise, the auto aggravation of the low cardiac output state becomes an irreversible vicious cycle.


Ventricular interdependence Pressure overload Volume overload 


  1. 1.
    Zehender M, Kasper W, Kauder E, et al. Right ventricular infarction as an independent predictor of prognosis after acute inferior myocardial infarction. N Engl J Med. 1993;328:981–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Goldhaber SZ, Visani L, De Rosa M. Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet. 1999;353:1386–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Nieminen MS, Brutsaert D, Dickstein K, et al. EuroHeart failure survey II (EHFS II): a survey on hospitalized acute heart failure patients: description of population. Eur Heart J. 2006;27:2725–36.CrossRefPubMedGoogle Scholar
  4. 4.
    Harjola VP, Mebazaa A, Čelutkienė J, Bettex D, Bueno H, Chioncel O, Crespo-Leiro MG, Falk V, Filippatos G, Gibbs S, Leite-Moreira A, Lassus J, Masip J, Mueller C, Mullens W, Naeije R, Nordegraaf AV, Parissis J, Riley JP, Ristic A, Rosano G, Rudiger A, Ruschitzka F, Seferovic P, Sztrymf B, Vieillard-Baron A, Yilmaz MB, Konstantinides S. Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur J Heart Fail. 2016;18(3):226–41.CrossRefGoogle Scholar
  5. 5.
    Greyson CR. Pathophysiology of right ventricular failure. Crit Care Med. 2008;36(Suppl. 1):857–65.Google Scholar
  6. 6.
    Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117:1717–31.CrossRefGoogle Scholar
  7. 7.
    Greyson CR. Right heart failure in the intensive care unit. Curr Opin Crit Care. 2012;18:424–31.CrossRefPubMedGoogle Scholar
  8. 8.
    Zapol WM, Snider MT. Pulmonary hypertension in severe acute respiratory failure. N Engl J Med. 1977;296:476–80.CrossRefPubMedGoogle Scholar
  9. 9.
    Rubin LJ. Primary pulmonary hypertension. N Engl J Med. 1997;336:111–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Naeije R. Pulmonary hypertension and right heart failure in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2:20–2.CrossRefPubMedGoogle Scholar
  11. 11.
    Hirsh J, Hoak J. Management of deep vein thrombosis and pulmonary embolism: a statement for healthcare professionals: Council on Thrombosis (in consultation with the Council on Cardiovascular Radiology), American Heart Association. Circulation. 1996;93:2212–45.CrossRefPubMedGoogle Scholar
  12. 12.
    La Vecchia L, Zanolla L, Varotto L, et al. Reduced right ventricular ejection fraction as a marker for idiopathic dilated cardiomyopathy compared with ischemic left ventricular dysfunction. Am Heart J. 2001;142:181–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Goldstein JA. Pathophysiology and management of right heart ischemia. J Am Coll Cardiol. 2002;40:841–53.CrossRefPubMedGoogle Scholar
  14. 14.
    Lambermont B, Ghuysen A, Kolh P, et al. Effects of endotoxic shock on right ventricular systolic function and mechanical efficiency. Cardiovasc Res. 2003;59:412–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Ghio S, Tavazzi L. Right ventricular dysfunction in advanced heart failure. Ital Heart J. 2005;6:852–5.PubMedGoogle Scholar
  16. 16.
    Guarracino F, Cariello C, Danella A, Doroni L, Lapolla F, Vullo C, Pasquini C, Stefani M. Right ventricular failure: physiology and assessment. Minerva Anestesiol. 2005;71(6):307–12.PubMedGoogle Scholar
  17. 17.
    Cecconi M, Johnston E, Rhodes A. What role does the right side of the heart play in circulation? Crit Care. 2006;10(Suppl 3):S5.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48.CrossRefPubMedGoogle Scholar
  19. 19.
    Haddad F, Couture P, Tousignant C, Denault AY. The right ventricle in cardiac surgery, a perioperative perspective: I. Anatomy, physiology, and assessment. Anesth Analg. 2009;108:407–21.CrossRefPubMedGoogle Scholar
  20. 20.
    Santamore WP, Dell’Italia LJ. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis. 1998;40:289–308.CrossRefPubMedGoogle Scholar
  21. 21.
    Dell’Italia LJ. The right ventricle: anatomy, physiology, and clinical importance. Curr Probl Cardiol. 1991;16:653–720.PubMedGoogle Scholar
  22. 22.
    Bolger AP, Sharma R, Li W, Leenarts M, Kalra PR, Kemp M, Coats AJ, Anker SD, Gatzoulis MA. Neurohormonal activation and the chronic heart failure syndrome in adults with congenital heart disease. Circulation. 2002;106:92–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Nootens M, Kaufmann E, Rector T, Toher C, Judd D, Francis GS, Rich S. Neurohormonal activation in patients with right ventricular failure from pulmonary hypertension: relation to hemodynamic variables and endothelin levels. J Am Coll Cardiol. 1995;26:1581–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Kiely DG, Cargill RI, Lipworth BJ. Angiotensin II receptor blockade and effects on pulmonary hemodynamics and hypoxic pulmonary vasoconstriction in humans. Chest. 1996;110:698–703.CrossRefPubMedGoogle Scholar
  25. 25.
    Channick RN, Simonneau G, Sitbon O, Robbins IM, Frost A, Tapson VF, Badesch DB, Roux S, Rainisio M, Bodin F, Rubin LJ. Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study. Lancet. 2001;358:1119–23.CrossRefGoogle Scholar
  26. 26.
    Nagaya N, Nishikimi T, Uematsu M, Satoh T, Kyotani S, Sakamaki F, Kakishita M, Fukushima K, Okano Y, Nakanishi N, Miyatake K, Kangawa K. Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation. 2000;102:865–70.CrossRefPubMedGoogle Scholar
  27. 27.
    Sharma R, Bolger AP, Li W, Davlouros PA, Volk HD, Poole-Wilson PA, Coats AJ, Gatzoulis MA, Anker SD. Elevated circulating levels of inflammatory cytokines and bacterial endotoxin in adults with congenital heart disease. Am J Cardiol. 2003;92:188–93.CrossRefPubMedGoogle Scholar
  28. 28.
    Reddy S, Bernstein D. Molecular mechanisms of right ventricular failure. Circulation. 2015;132(18):1734–42.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gomez-Arroyo J, Sakagami M, Syed AA, et al. Iloprost reverses established fibrosis in experimental right ventricular failure. Eur Respir J. 2015;45(2):449–62.CrossRefPubMedGoogle Scholar
  30. 30.
    Piao L, Marsboom G, Archer SL. Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure. J Mol Med (Berl). 2010;88(10):1011–20.CrossRefGoogle Scholar
  31. 31.
    Urashima T, Zhao M, Wagner R, et al. Molecular and physiological characterization of RV remodeling in a murine model of pulmonary stenosis. Am J Physiol Heart Circ Physiol. 2008;295(3):H1351–68.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lowes BD, Minobe W, Abraham WT, et al. Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. J Clin Invest. 1997;100(9):2315–24.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bakerman PR, Stenmark KR, Fisher JH. Alpha-skeletal actin messenger RNA increases in acute right ventricular hypertrophy. Am J Phys. 1990;258(4 Pt 1):L173–8.Google Scholar
  34. 34.
    Bartelds B, Borgdorff MA, Smit-van Oosten A, et al. Differential responses of the right ventricle to abnormal loading conditions in mice: pressure vs. volume load. Eur J Heart Fail. 2011;13(12):1275–82.CrossRefPubMedGoogle Scholar
  35. 35.
    Nagendran J, Archer SL, Soliman D, et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation. 2007;116(3):238–48.CrossRefPubMedGoogle Scholar
  36. 36.
    Archer SL, Fang YH, Ryan JJ, Piao L. Metabolism and bioenergetics in the right ventricle and pulmonary vasculature in pulmonary hypertension. Pulm Circ. 2013;3(1):144–52.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bogaard HJ, Natarajan R, Henderson SC, et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation. 2009;120(20):1951–60.CrossRefGoogle Scholar
  38. 38.
    Sutendra G, Dromparis P, Paulin R, et al. A metabolic remodeling in right ventricular hypertrophy is associated with decreased angiogenesis and a transition from a compensated to a decompensated state in pulmonary hypertension. J Mol Med (Berl). 2013;91(11):1315–27.CrossRefGoogle Scholar
  39. 39.
    Henning RJ. Effects of positive end-expiratory pressure on the right ventricle. J Appl Physiol. 1986;61(3):819–26.CrossRefPubMedGoogle Scholar
  40. 40.
    Kevin LG, Barnard M. Right ventricular failure. Contin Educ Anaesth Crit Care Pain. 2007;7(3):89–94.CrossRefGoogle Scholar
  41. 41.
    Voelkel NF, Quaife RA, Leinwand LA, national heart, lung, and blood institute working group on cellular and molecular mechanisms of right heart failure, et al. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114(17):1883–91.CrossRefGoogle Scholar
  42. 42.
    MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part one. Am J Respir Crit Care Med. 1994;150(3):833–52.CrossRefPubMedGoogle Scholar
  43. 43.
    Bernheim D. De l’asystole veineuse dons l’hypertrophie du coeur gauche par stenose concomitante du ventricule droit. Rev Med (Paris). 1910;30:z785.Google Scholar
  44. 44.
    Santamore WP, Lynch PR, Heckman JL, et al. Left ventricular effects on right ventricular developed pressure. J Appl Physiol. 1976;41(6):925–30.CrossRefPubMedGoogle Scholar
  45. 45.
    Winter MM, Bouma BJ, Groenink M, et al. Latest insights in therapeutic options for systemic right ventricular failure: a comparison with left ventricular failure. Heart. 2009;95:960–3.CrossRefPubMedGoogle Scholar
  46. 46.
    Szymañski P, Klisiewicz A, Hoffman P. Therapeutic options for systemic right ventricular failure. Heart. 2009;95:1950–1.CrossRefPubMedGoogle Scholar
  47. 47.
    Shaddy RE, Boucek MM, Hsu DT, Pediatric Carvedilol Study Group, et al. Carvedilol for children and adolescents with heart failure: a randomized controlled trial. JAMA. 2007;298:1171–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Poels EM, da Costa Martins PA, van Empel VP. Adaptive capacity of the right ventricle: why does it fail? Am J Physiol Heart Circ Physiol. 2015;308(8):H803–13.CrossRefPubMedGoogle Scholar
  49. 49.
    Mebazaa A, Karpati P, Renaud E, Algotsson L. Acute right ventricular failure- from pathophysiology to new treatments. Intensive Care Med. 2004;30:185–96.CrossRefPubMedGoogle Scholar
  50. 50.
    Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest. 2009;135:794–804.CrossRefPubMedGoogle Scholar
  51. 51.
    Rondelet B, Dewachter C, Kerbaul F, et al. Prolonged overcirculation-induced pulmonary arterial hypertension as a cause of right ventricular failure. Eur Heart J. 2012;33:1017–26.CrossRefPubMedGoogle Scholar
  52. 52.
    Davlouros PA, Niwa K, Webb G, Gatzoulis MA. The right ventricle in congenital heart disease. Heart. 2006;92(Suppl 1):i27–38.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Fogel MA, Rychik J. Right ventricular function in congenital heart disease: pressure and volume overload lesions. Prog Cardiovasc Dis. 1998;40:343–56.CrossRefPubMedGoogle Scholar
  54. 54.
    Popio KA, Gorlin R, Teichholz LE, Cohn PF, Bechtel D, Herman MV. Abnormalities of left ventricular function and geometry in adults with an atrial septal defect. Ventriculographic, hemodynamic and echocardiographic studies. Am J Cardiol. 1975;36:302–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Lindsey JB, Hillis LD. Clinical update: atrial septal defect in adults. Lancet. 2007;369:1244–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Jardin F, Dubourg O, Gueret P, Delorme G, Bourdarias JP. Quantitative two dimensional echocardiography in massive pulmonary embolism: emphasis on ventricular interdependence and leftward septal displacement. J Am Coll Cardiol. 1987;10:1201–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Bueno H, Lopez-Palop R, Perez-David E, Garcia-Garcia J, Lopez-Sendon JL, Delcan JL. Combined effect of age and right ventricular involvement on acute inferior myocardial infarction prognosis. Circulation. 1998;98:1714–20.CrossRefPubMedGoogle Scholar
  58. 58.
    Brodie BR, Stuckey TD, Hansen C, Bradshaw BH, Downey WE, Pulsipher MW. Comparison of late survival in patients with cardiogenic shock due to right ventricular infarction versus left ventricular pump failure following primary percutaneous coronary intervention for ST-elevation acute myocardial infarction. Am J Cardiol. 2007;99:431–5.CrossRefPubMedGoogle Scholar
  59. 59.
    Laster SB, Shelton TJ, Barzilai B, Goldstein JA. Determinants of the recovery of right ventricular performance following experimental chronic right coronary artery occlusion. Circulation. 1993;88:696–708.CrossRefPubMedGoogle Scholar
  60. 60.
    Laster SB, Ohnishi Y, Saffitz JE, Goldstein JA. Effects of reperfusion on ischemic right ventricular dysfunction. Disparate mechanisms of benefit related to duration of ischemia. Circulation. 1994;90:1398–409.CrossRefPubMedGoogle Scholar
  61. 61.
    Dell’Italia LJ, Lembo NJ, Starling MR, Crawford MH, Simmons RS, Lasher JC, Blumhardt R, Lancaster J, O’Rourke RA. Hemodynamically important right ventricular infarction: follow-up evaluation of right ventricular systolic function at rest and during exercise with radionuclide ventriculography and respiratory gas exchange. Circulation. 1987;75:996–1003.CrossRefPubMedGoogle Scholar
  62. 62.
    Mehta SR, Eikelboom JW, Natarajan MK, Diaz R, Yi C, Gibbons RJ, Yusuf S. Impact of right ventricular involvement on mortality and morbidity in patients with inferior myocardial infarction. J Am Coll Cardiol. 2001;37:37–43.CrossRefPubMedGoogle Scholar
  63. 63.
    Stobierska-Dzierzek B, Awad H, Michler RE. The evolving management of acute rightsided heart failure in cardiac transplant recipients. J Am Coll Cardiol. 2001;38:923–31.CrossRefPubMedGoogle Scholar
  64. 64.
    Kaul TK, Fields BL. Postoperative acute refractory right ventricular failure: Incidence, pathogenesis, management and prognosis. Cardiovasc Surg. 2000;8:1–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Haddad F, Couture P, Tousignant C, Denault AY. The right ventricle in cardiac surgery, a perioperative perspective: II. Pathophysiology, clinical importance, and management. Anesth Analg. 2009;108:422–33.CrossRefPubMedGoogle Scholar
  66. 66.
    Vieillard-Baron A, Price LC, Matthay MA. Acute cor pulmonale in ARDS. Intensive Care Med. 2013;39:1836–8.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Jardin F, Vieillard-Baron A. Is there a safe plateau pressure in ARDS? The right heart only knows. Intensive Care Med. 2007;33:444–7.CrossRefPubMedGoogle Scholar
  68. 68.
    Bueno H, Lopez-Palop R, Bermejo J, Lopez-Sendon JL, Delcan JL. In-hospital outcome of elderly patients with acute inferior myocardial infarction and right ventricular involvement. Circulation. 1997;96:436–41.CrossRefPubMedGoogle Scholar
  69. 69.
    Jardin F, Brun-Ney D, Auvert B, Beauchet A, Bourdarias JP. Sepsis related cardiogenic shock. Crit Care Med. 1990;18:1055–60.CrossRefPubMedGoogle Scholar
  70. 70.
    Georgescu GIM, Arsenescu C. Bolile pericardului. In: Tratamentul rational al bolilor cardiovasculare majore. Iasi: Polirom; 2001. p. 123–32.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cătălina Arsenescu-Georgescu
    • 1
    • 2
  • Carmen Elena Pleşoianu
    • 1
    • 2
  • Delia Şălaru
    • 1
    • 2
  1. 1.Department of Cardiology and Internal Medicine“Gr. T. Popa” University of Medicine and PharmacyIasiRomania
  2. 2.Department of Cardiology“George I.M. Georgescu” Cardiovascular Diseases InstituteIasiRomania

Personalised recommendations