Advertisement

Hypertrophy and Dilatation, Markers of Dysfunction

  • Ecaterina Bontaş
  • Florentina Radu-Ioniţă
  • Liviu Stan
Chapter

Abstract

Known as “the forgotten ventricle”, right ventricle (RV) is presently not anymore regarded as a needless or inactive component of the normal circulation. In addition, the importance of right ventricular function in cardiovascular disease and cardiac surgery has been recognized from several years. RV dysfunction has been shown to be an independent significant prognostic factor in heart failure, congenital heart disease, valvular disease, and cardiac surgery. Nowadays, significant basic science work proved that the RV has an essential function in the pathogenesis and prognosis of numerous cardiovascular diseases including the numerous acquired and congenital cardiac diseases. As a result, there is an increasing research focused on the significance of the individual RV function, in addition to its effect on global heart function through biventricular relationships. The aim of this chapter is to underline that pathologic hypertrophy and dilatation may represent markers of right ventricle dysfunction.

Keywords

Right heart Right heart mechanics Physiopathology Hypertrophy Right heart dilatation Right ventricle failure Right atrium Right ventricle Preload Overload 

References

  1. 1.
    Sheehan F, Redington A. The right ventricle: anatomy, physiology and clinical imaging. Heart. 2008;94(11):1510–5.  https://doi.org/10.1136/hrt.2007.132779.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kondo RP, Dederko DA, Teutsch C, Chrast J, Catalucci D, Chien KR, Giles WR. Comparison of contraction and calcium handling between right and left ventricular myocytes from adult mouse heart: a role for repolarization waveform. J Physiol. 2006;571:131–46.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    D’Alto M, Scognamiglio G, Dimopoulos K, Bossone E, Vizza D, Romeo E, Vonk-Noordergraaf A, Gaine S, Peacock A, Naeije R. Right heart and pulmonary vessels structure and function. Echocardiography. 2015;32(Suppl 1):S3–10.  https://doi.org/10.1111/echo.12227. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sánchez-Quintana D, Doblado-Calatrava M, Cabrera JA, Macías Y, Saremi F. Anatomical basis for the cardiac interventional electrophysiologist. Biomed Res Int. 2015;2015:547364.  https://doi.org/10.1155/2015/547364.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Vitarelli A, Terzano C. Do we have two hearts? New insights in right ventricular function supported by myocardial imaging echocardiography. Heart Fail Rev. 2010;15(1):39–61.  https://doi.org/10.1007/s10741-009-9154-x.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Goor DA, Lillehei CW. Congenital malformations of the heart. 1st ed. New York: Grune and Stratton; 1975. p. 1–37.Google Scholar
  7. 7.
    Choudhary G, Malik AA, Stapleton D, Reddy PC. Assessment of right ventricle by echocardiogram, echocardiography in heart failure and cardiac electrophysiology, Lakshmanadoss U, editor. Intech; 2016.  https://doi.org/10.5772/64781. Available from https://www.intechopen.com/books/echocardiography-in-heart-failure-and-cardiac-electrophysiology/assessment-of-right-ventricle-by-echocardiogram. Open access chapter.Google Scholar
  8. 8.
    Friedberg MK, Redington AN. Right versus left ventricular failure: differences, similarities, and interactions. Circulation. 2014;129(9):1033–44.  https://doi.org/10.1161/CIRCULATIONAHA.113.001375.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kaul S. The interventricular septum in health and disease. Am Heart J. 1986;112:568–81.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Lindqvist P, Morner S, Karp K, Waldenstrom A. New aspects of septal function by using 1-dimensional strain and strain rate imaging. J Am Soc Echocardiogr. 2006;19:1345–9.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Klima U, Guerrero JL, Vlahakes GJ. Contribution of the interventricular septum to maximal right ventricular function. Eur J Cardiothorac Surg. 1998;14:250–5.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Blessberger H, Binder T. Non-invasive imaging: two dimensional speckle tracking echocardiography: basic principles. Heart. 2010;96(9):716–22.  https://doi.org/10.1136/hrt.2007.141002.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Thomas JD, Popović ZB. Assessment of left ventricular function by cardiac ultrasound. Am Coll Cardiol. 2006;48(10):2012–25.  https://doi.org/10.1016/j.jacc.2006.06.071.CrossRefGoogle Scholar
  14. 14.
    Geva T, Powell AJ, Crawford EC, Chung T, Colan SD. Evaluation of regional differences in right ventricular systolic function by acoustic quantification echocardiography and cine magnetic resonance imaging. Circulation. 1998;98:339–45.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bleeker GB, Steendijk P, Holman ER, Yu CM, Breithardt OA, Kaandorp TA, Schalij MJ, van der Wall EE, Nihoyannopoulos P, Bax JJ. Assessing right ventricular function: the role of echocardiography and complementary technologies. Heart. 2006;92(Suppl 1):i19–26.  https://doi.org/10.1136/hrt.2005.082503.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lindqvist P, Calcutteea A, Henein M. Echocardiography in the assessment of right heart function. Eur J Echocardiogr. 2008;9(2):225–34.  https://doi.org/10.1016/j.euje.2007.04.002. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rouleau JL, Paradis P, Shenasa H, et al. Faster time to peak tension and velocity of shortening in right versus left ventricular trabeculae and papillary muscles of dogs. Circ Res. 1986;59:556–61.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Brooks WW, Bing OH, Blaustein AS, Allen PD. Comparison of contractile state and myosin isozymes of rat right and left ventricular myocardium. J Mol Cell Cardiol. 1987;19(5):433–40.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Harding SE, O’Gara P, Jones SM, Brown LA, Vescovo G, Poole-Wilson PA. Species dependence of contraction velocity in single isolated cardiac myocytes. Cardioscience. 1990;1(1):49–53.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Kırali K, Özer T, Özgür MM. Pathophysiology in heart failure, cardiomyopathies – types and treatments, Kırali K, editor. Intech; 2017.  https://doi.org/10.5772/66887. Available from https://www.intechopen.com/books/cardiomyopathies-types-and-treatments/pathophysiology-in-heart-failure. Open access chapter.
  21. 21.
    Berlin DA, Bakker J. Understanding venous return. Intensive Care Med. 2014;40:1564–6.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Leng J. Right ventricle. In: Weyman AE, editor. Principle and practice of echocardiography. Philadelphia: Lippincott Williams & Wilkins; 1994. p. 901–21.Google Scholar
  23. 23.
    Haddad F, Couture P, Tousignant C, Denault AY. The right ventricle in cardiac surgery, a perioperative perspective: I. Anatomy, physiology, and assessment. Anesth Analg. 2009;108(2):407–21.  https://doi.org/10.1213/ane.0b013e31818f8623.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Damiano RJ Jr, La Follette P Jr, Cox JL, Lowe JE, Santamore WP. Significant left ventricular contribution to right ventricular systolic function. Am J Phys. 1991;261(5 Pt 2):H1514–24.Google Scholar
  25. 25.
    Dell’Italia LJ. The right ventricle: anatomy, physiology, and clinical importance. Curr Probl Cardiol. 1991;16:653–720.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease. I. Anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48.  https://doi.org/10.1161/CIRCULATIONAHA.107.653576.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Walker LA, Buttrick PM. The right ventricle: biologic insights and response to disease: updated. Curr Cardiol Rev. 2013;9(1):73–81. Open access article.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Gentles TL, Mayer JE Jr, Gauvreau K, Newburger JW, Lock JE, Kupferschmid JP, Burnett J, Jonas RA, Castañeda AR, Wernovsky G. Fontan operation in five hundred consecutive patients: factors influencing early and late outcome. J Thorac Cardiovasc Surg. 1997;114(3):376–91.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Tedford RJ. Determinants of right ventricular afterload (2013 grover conference series). Pulm Circ. 2014;4:211–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Markel TA, Wairiuko GM, Lahm T, Crisostomo PR, Wang M, Herring CM, Meldrum DR. The right heart and its distinct mechanisms of development, function, and failure. J Surg Res. 2008;146:304–13.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP Jr. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson. 1999;1:7–21.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Mahler DA, Matthay RA, Snyder PE, Pytlik L, Zaret BL, Loke J. Volumetric responses of right and left ventricles during upright exercise in normal subjects. J Appl Physiol. 1985;58:1818–22.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Reddy S, Bernstein D. The vulnerable right ventricle. Curr Opin Pediatr. 2015;27(5):563–8.  https://doi.org/10.1097/MOP.0000000000000268.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Goldstein JA. Pathophysiology and management of right heart ischemia. J Am Coll Cardiol. 2002;40(5):841–53.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Dell’Italia LJ, Walsh RA. Application of a time varying elastance model to right ventricular performance in man. Cardiovasc Res. 1988;22(12):864–74.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Guyton AC, Lindsey AW, Gilluly JJ. The limits of right ventricular compensation following acute increase in pulmonary circulatory resistance. Circ Res. 1954;2(4):326–32.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Shaver JA, Nadolny RA, O’Toole JD, et al. Sound pressure correlates of the second heart sound. An intracardiac sound study. Circulation. 1974;49:316–25.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Shekerdemian LS, Bush A, Lincoln C, Shore DF, Petros AJ, Redington AN. Cardiopulmonary interactions in healthy children and children after simple cardiac surgery: the effects of positive and negative pressure ventilation. Heart. 1997;78:587–93.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Phillips D, Aponte AM, Covian R, Neufeld E, ZX Y, Balaban RS. Homogenous protein programming in the mammalian left and right ventricle free walls. Physiol Genomics. 2011;43:1198–206.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    McLaughlin VV, McGoon MD. Pulmonary arterial hypertension. Circulation. 2006;114(13):1417–31.  https://doi.org/10.1161/CIRCULATIONAHA.104.503540.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Naeije R, Brimioulle S, Dewachter L. Biomechanics of the right ventricle in health and disease (2013 Grover Conference series). Pulm Circ. 2014;4:395–406.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Voelkel NF, Gomez-Arroyo J, Abbate A, Bogaard HJ. Mechanisms of right heart failure-a work in progress and a plea for failure prevention. Pulm Circ. 2013;3:137–43.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kosiborod M, Wackers FJ. Assessment of right ventricular morphology and function. Semin Respir Crit Care Med. 2003;24:245–62.PubMedCrossRefGoogle Scholar
  44. 44.
    Webb G, Gatzoulis MA. Atrial septal defects in the adult: recent progress and overview. Circulation. 2006;114(15):1645–53.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part One. Am J Respir Crit Care Med. 1994;150(3):833–52.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Goldhaber SZ, Visani L, De Rosa M. Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet. 1999;353(9162):1386–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Laster SB, Ohnishi Y, Saffitz JE, Goldstein JA. Effects of reperfusion on ischemic right ventricular dysfunction. Disparate mechanisms of benefit related to duration of ischemia. Circulation. 1994;90:1398–409.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Laster SB, Shelton TJ, Barzilai B, Goldstein JA. Determinants of the recovery of right ventricular performance following experimental chronic right coronary artery occlusion. Circulation. 1993;88:696–708.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ohuchi H, Beighley PE, Dong Y, Zamir M, Ritman EL. Microvascular development in porcine right and left ventricular walls. Pediatr Res. 2007;61:676–80.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Bristow MR, Zisman LS, Lowes BD, Abraham WT, Badesch DB, Groves BM, Voelkel NF, Lynch DM, Quaife RA. The pressure-overloaded right ventricle in pulmonary hypertension. Chest. 1998;114(Suppl. 1):101S–6S.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Pokreisz P, Marsboom G, Janssens G. Pressure overload-induced right ventricular dysfunction and remodelling in experimental pulmonary hypertension: the right heart revisited. Eur Heart J Suppl. 2007;9(Supplement H):H75–84.  https://doi.org/10.1093/eurheartj/sum021.CrossRefGoogle Scholar
  52. 52.
    Schulman DS, Matthay RA. The right ventricle in pulmonary disease. Cardiol Clin. 1992;10:111–35.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Borgdorff MA, Dickinson MG, Berger RM, Bartelds B. Right ventricular failure due to chronic pressure load: What have we learned in animal models since the NIH working group statement? Heart Fail Rev. 2015;20(4):475–91. Open access article.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    van Berlo JH, Maillet M, Molkentin JD. Signaling effectors underlying pathologic growth and remodeling of the heart. J Clin Invest. 2013;123(1):37–45.  https://doi.org/10.1172/JCI62839.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008a;117(13):1717–31.  https://doi.org/10.1161/CIRCULATIONAHA.107.653584.CrossRefGoogle Scholar
  56. 56.
    Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol. 2003;65:45–79.  https://doi.org/10.1146/annurev.physiol.65.092101.142243.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Sharov VG, Sabbah HN, Shimoyama H, Goussev AV, Lesch M, Goldstein S. Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol. 1996;148(1):141–9.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Teiger E, Than VD, Richard L, Wisnewsky C, Tea BS, Gaboury L, Tremblay J, Schwartz K, Hamet P. Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest. 1996;97(12):2891–7.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P. Apoptosis in the failing human heart. N Engl J Med. 1997;336(16):1131–41.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Tan LB, Jalil JE, Pick R, Janicki JS, Weber KT. Cardiac myocyte necrosis induced by angiotensin II. Circ Res. 1991;69(5):1185–95.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Villarreal FJ, Kim NN, Ungab GD, Printz MP, Dillmann WH. Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation. 1993;88(6):2849–61.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Anderson KR, Sutton MG, Lie JT. Histopathological types of cardiac fibrosis in myocardial disease. J Pathol. 1979;128(2):79–85.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Weber KT, Pick R, Silver MA, Moe GW, Janicki JS, Zucker IH, Armstrong PW. Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation. 1990;82(4):1387–401.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Akazawa H, Komuro I. Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res. 2003;92(10):1079–88.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kamo T, Akazawa H, Komuro I. Cardiac nonmyocytes in the hub of cardiac hypertrophy. Circ Res. 2015;117(1):89–98.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Oka T, Akazawa H, Naito AT, Komuro I. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ Res. 2014;114(3):565–71.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Leri A, Kajstura J, Anversa P. Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res. 2011;109(8):941–61.  https://doi.org/10.1161/CIRCRESAHA.111.243154.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Dassanayaka S, Jones SP. Recent developments in heart failure. Circ Res. 2015;117(7):e58–63.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Siri FM, McNamara JJ. Effects of sympathectomy on heart size and function in aortic-constricted rats. Am J Phys. 1987;252(2 Pt 2):H442–7.Google Scholar
  70. 70.
    Finn SG, Dickens M, Fuller SJ. c-Jun N-terminal kinase-interacting protein 1 inhibits gene expression in response to hypertrophic agonists in neonatal rat ventricular myocytes. Biochem J. 2001;358:489–95.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest. 2009;119:2758–71.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006;7(8):589–600.  https://doi.org/10.1038/nrm1983.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    McMullen JR, Jennings GL. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol. 2007;34(4):255–62.  https://doi.org/10.1111/j.1440-1681.2007.04585.x.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Rain S, Handoko ML, Vonk Noordegraaf A, Bogaard HJ, van der Velden J, de Man FS. Pressure-overload-induced right heart failure. Pflugers Arch. 2014;466:1055–63.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Ruiter G, Ying Wong Y, de Man FS, Louis Handoko M, Jaspers RT, Postmus PE, Westerhof N, Niessen HW, van der Laarse WJ, Vonk-Noordegraaf A. Right ventricular oxygen supply parameters are decreased in human and experimental pulmonary hypertension. J Heart Lung Transplant. 2013;32:231–40.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Nahrendorf M, Hu K, Fraccarollo D, et al. Time course of right ventricular remodeling in rats with experimental myocardial infarction. Am J Physiol Heart Circ Physiol. 2002;284:241–8.CrossRefGoogle Scholar
  77. 77.
    Bocchi EA, Marcondes-Braga FG, Bacal F, et al. Updating of the Brazilian guideline for chronic heart failure – 2012. Arq Bras Cardiol. 2012;98(1 Suppl 1):1–33.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Jessup M, Brozena S. Heart failure. N Engl J Med. 2003;348(20):2007–18.CrossRefPubMedGoogle Scholar
  79. 79.
    Colucci WS. Molecular and cellular mechanisms of myocardial failure. Am J Cardiol. 1997;80(11A):15L–25L.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med. 1999;341(8):577–85.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Mebazaa A, Karpati P, Renaud E, Algotsson L. Acute right ventricular failure: from pathophysiology to new treatments. Intensive Care Med. 2004;30:185–96.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Gaynor SL, Maniar HS, Bloch JB, Steendijk P, Moon MR. Right atrial and ventricular adaptation to chronic right ventricular pressure overload. Circulation. 2005a;112(Suppl. 9):I212–8.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Gaynor SL, Maniar HS, Prasad SM, Steendijk P, Moon MR. Reservoir and conduit function of right atrium: impact on right ventricular filling and cardiac output. Am J Physiol Heart Circ Physiol. 2005;288:H2140–5.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Cuspidi C, Negri F, Giudici V, Valerio C, Meani S, Sala C, et al. Prevalence and clinical correlates of right ventricular hypertrophy in essential hypertension. J Hypertens. 2009;27:854–60.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Cuspidi C, Sala C, Muiesan ML, De Luca N, Schillaci G. Right ventricular hypertrophy in systemic hypertension: an updated review of clinical studies. J Hypertens. 2013;31:858–65.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Chin KM, Kim NH, Rubin LJ. The right ventricle in pulmonary hypertension. Coron Artery Dis. 2005;16:13–8.CrossRefPubMedGoogle Scholar
  87. 87.
    de Vroomen M, Cardozo RH, Steendijk P, van Bel F, Baan J. Improved contractile performance of right ventricle in response to increased RV afterload in newborn lamb. Am J Physiol Heart Circ Physiol. 2000;278:H100–5.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Hon JK, Steendijk P, Khan H, Wong K, Yacoub M. Acute effects of pulmonary artery banding in sheep on right ventricle pressure-volume relations: relevance to the arterial switch operation. Acta Physiol Scand. 2001;172:97–106.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kowalewski J, Brocki M, Dryjanski T, Kapron K, Barcikowski S. Right ventricular morphology and function after pulmonary resection. Eur J Cardiothorac Surg. 1999;15:444–8.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Eltzschig HK, Mihaljevic T, Byrne JG, Ehlers R, Smith B, Shernan SK. Echocardiographic evidence of right ventricular remodeling after transplantation. Ann Thorac Surg. 2002;74:584–6.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Rozenberg VD, Nepomnyashchikh LM. Postinfarction remodeling of the heart: types of pathomorphological changes in the right ventricle. Bull Exp Biol Med. 2003;136:291–5.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Gardner JD, Brower GL, Janicki JS. Gender differences in cardiac remodeling secondary to chronic volume overload. J Card Fail. 2002;8:101–7.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Hill JA. Electrical remodeling in cardiac hypertrophy. Trends Cardiovasc Med. 2003;13:316–22.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Dias CA, Assad RS, Caneo LF, et al. Reversible pulmonary trunk banding. II. An experimental model for rapid pulmonary ventricular hypertrophy. J Thorac Cardiovasc Surg. 2002;124(5):999–1006.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Sutendra G, Dromparis P, Paulin R, Zervopoulos S, Haromy A, Nagendran J, Michelakis ED. A metabolic remodeling in right ventricular hypertrophy is associated with decreased angiogenesis and a transition from a compensated to a decompensated state in pulmonary hypertension. J Mol Med (Berl). 2013;91:1315–27.CrossRefGoogle Scholar
  96. 96.
    Sugden MC, Langdown ML, Harris RA, Holness MJ. Expression and regulation of pyruvate dehydrogenase kinase isoforms in the developing rat heart and in adulthood: Role of thyroid hormone status and lipid supply. Biochem J. 2000;352(Pt 3):731–8.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Piao L, Fang YH, Parikh KS, Ryan JJ, D’Souza KM, Theccanat T, Toth PT, Pogoriler J, Paul J, Blaxall BC, Akhter SA, Archer SL. Grk2-mediated inhibition of adrenergic and dopaminergic signaling in right ventricular hypertrophy: therapeutic implications in pulmonary hypertension. Circulation. 2012;126:2859–69.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Olson EN. A decade of discoveries in cardiac biology. Nat Med. 2004;10(5):467–74.  https://doi.org/10.1038/nm0504-467.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008;358(13):1370–80.  https://doi.org/10.1056/NEJMra072139.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Osler W. Section V. Diseases of the circulatory system. Hypertrophy and Dilatation by Osler, William, Sir, 1849-1919. In: The principles and practice of medicine, designed for the use of practitioners and students of medicine. 1st edition, 2nd state of British edition; cf. R.L. Golden & C.G. Ronad, Sir William Osler, no. 1440. Publisher Edinburgh; London: Young J. Putland; 1892.Google Scholar
  101. 101.
    Akazawa H. Mechanisms of cardiovascular homeostasis and pathophysiology – from gene expression, signal transduction to cellular communication. Circ J. 2015;79(12):2529–36.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Lorell BH, Carabello BA. Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation. 2000;102(4):470–9.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Göktepe S, Abilez OJ, Parker KK, Kuhl E. A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J Theor Biol. 2012;265:433–42.  https://doi.org/10.1016/j.jtbi.2010.04.023. CrossRefGoogle Scholar
  104. 104.
    Genet M, Lee LC, Baillargeon B, Guccione JM, Kuhl E. Modeling pathologies of systolic and diastolic heart failure. Ann Biomed Eng. 2015;44:112–27.  https://doi.org/10.1007/s10439-015-1351-2.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Kerckhoffs RCP, Omens JH, McCulloch AD. A single strain-based growth law predicts concentric and eccentric cardiac growth during pressure and volume overload. Mech Res Commun. 2012;42:40–50.  https://doi.org/10.1016/j.mechrescom.2011.11.004.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Rausch MK, Dam A, Göktepe S, Abilez OJ, Kuhl E. Computational modeling of growth: systemic and pulmonary hypertension in the heart. Biomech Model Mechanobiol. 2011;10(6):799–811.  https://doi.org/10.1007/s10237-010-0275-x.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Yamamoto S, James TN, Sawada K, Okabe M, Kawamura K. Generation of new intercellular junctions between cardiocytes. A possible mechanism compensating for mechanical overload in the hypertrophied human adult myocardium. Circ Res. 1996;78:362–70.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Saleh S, Liakopoulos OJ, Buckberg GD. The septal motor of biventricular function. Eur J Cardiothorac Surg. 2006;29(Suppl 1):S126–38.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Carabello BA. Concentric versus eccentric remodeling. J Card Fail. 2002;8(6 Suppl):S258–63.  https://doi.org/10.1054/jcaf.2002.129250. CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999;79(1):215–62.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Fedak PWM, Verma S, Weisel RD, Li R. Cardiac remodeling and failure from molecules to man (Part I). Cardiovasc Physiol. 2005;12:1–11.Google Scholar
  112. 112.
    Boxt LM, Katz J, Kolb T, Czegledy FP, Barst RJ. Direct quantitation of right and left ventricular volumes with nuclear magnetic resonance imaging in patients with primary pulmonary hypertension. J Am Coll Cardiol. 1992;19(7):1508–15.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Chen EP, Craig DM, Bittner HB, Davis RD, Van Trigt P. Pharmacological strategies for improving diastolic dysfunction in the setting of chronic pulmonary hypertension. Circulation. 1998;97(16):1606–12.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Louie EK, Lin SS, Reynertson SI, Brundage BH, Levitsky S, Rich S. Pressure and volume loading of the right ventricle have opposite effects on left ventricular ejection fraction. Circulation. 1995;92(4):819–24.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    O’Rourke RA, Dell’Italia LJ. Diagnosis and management of right ventricular myocardial infarction. Curr Probl Cardiol. 2004;29:6–47.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Davlouros PA, Niwa K, Webb G, Gatzoulis MA. The right ventricle in congenital heart disease. Heart. 2006;92(Suppl 1):i27–38.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Domingo E, Aguilar R, López-Meseguer M, Teixidó G, Vazquez M, Roman A. New concepts in the invasive and non invasive evaluation of remodelling of the right ventricle and pulmonary vasculature in pulmonary arterial hypertension. Open Respir Med J. 2009;3:31–7.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Jurcut R, Giusca S, La Gerche A, Vasile S, Ginghina C, Voigt JU. The echocardiographic assessment of the right ventricle: what to do in 2010? Eur J Echocardiogr. 2010;11(2):81–96.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, Opie L. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet. 2014;383(9932):1933–43.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Opie LH. The metabolic vicious cycle in heart failure. Lancet. 2004;364:1733–4.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    D’Alonzo GE, Barst RJ, Ayres SM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115(5):343–9.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    de Groote P, Millaire A, Foucher-Hossein C, et al. Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol. 1998;32(4):948–54.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Di Salvo TG, Mathier M, Semigran MJ, Dec GW. Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol. 1995;25(5):1143–53.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Polak JF, Holman BL, Wynne J, Colucci WS. Right ventricular ejection fraction: an indicator of increased mortality in patients with congestive heart failure associated with coronary artery disease. J Am Coll Cardiol. 1983;2(2):217–24.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Sandoval J, Bauerle O, Palomar A, et al. Survival in primary pulmonary hypertension. Validation of a prognostic equation. Circulation. 1994;89(4):1733–44.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Malik SB, Kwan D, Shah AB, Hsu JY. The right atrium: gateway to the heart – anatomic and pathologic imaging findings. Radiographics. 2015;35(1):14–31.  https://doi.org/10.1148/rg.351130010.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, Dupuis J, Long CS, Rubin LJ, Smart FW, Suzuki YJ, Gladwin M, Denholm EM, Gail DB. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute Working Group on Cellular and Molecular Mechanisms of Right Heart Failure. Circulation. 2006;114:1883–91.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Bussani R, Abbate A, Biondi-Zoccai GG, Dobrina A, Leone AM, Camilot D, Di Marino MP, Baldi F, Silvestri F, Biasucci LM, Baldi A. Right ventricular dilatation after left ventricular acute myocardial infarction is predictive of extremely high peri-infarctual apoptosis at postmortem examination in humans. J Clin Pathol. 2003;56(9):672–6.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Hirose K, Reed JE, Rumberger JA. Serial changes in regional right ventricular free-wall and left ventricular septal wall lengths during the first 4-5 years after index anterior wall myocardial infarction. J Am Coll Cardiol. 1995;26:394–400.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Beygui F, Furber A, Delepine S, et al. Assessment of biventricular remodeling by magnetic resonance imaging after successful primary stenting for acute myocardial infarction. Am J Cardiol. 2004;94:354–7.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Bhatia SJS, Kirshenbaum JM, Shemin RJ, et al. Time course of resolution of pulmonary hypertension and right ventricular remodeling after orthotopic cardiac transplantation. Circulation. 1987;4:819–26.CrossRefGoogle Scholar
  132. 132.
    Cook AL, Hurwitz LM, Valente AM, Herlong JR. Right heart dilatation in adults: congenital causes. AJR Am J Roentgenol. 2007;189(3):592–601.  https://doi.org/10.2214/AJR.07.2420.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Pearlman AS, Borer JS, Clark CE, et al. Abnormal right ventricular size and ventricular septal motion after atrial septal defect closure. Am J Cardiol. 1972;41:295–301.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ecaterina Bontaş
    • 1
  • Florentina Radu-Ioniţă
    • 2
    • 3
  • Liviu Stan
    • 4
  1. 1.Department of Cardiology“Prof. C.C. Iliescu” Emergency Institute University for Cardiovascular DiseasesBucharestRomania
  2. 2.“Titu Maiorescu” University of MedicineBucharestRomania
  3. 3.“Carol Davila” Central Military Emergency University HospitalBucharestRomania
  4. 4.Department of Cardiovascular SurgeryCentral Clinic Emergency Military Hospital “Carol Davila”BucharestRomania

Personalised recommendations