Future Directions

  • Liviu Chiriac
  • Razvan Roşulescu


The pulmonary system and the cardiovascular system are linked in multiple pathways such as in haemodinamics, physiological and pathological mechanisms, diseases complications and prognosis. The right ventricle is a vital heart chamber for the pulmonary and systemic mechanisms that contribute to sustain systolic and diastolic function. Due to the vastity and importance of pathologies that are involving mainly the left ventricule and the left heart valves represented by the mitral and aortic valves, the right heart was somehow like a Cinderella many years but as stated in the upper lines the right ventricule function and physiopathological implications are crucial for the normal function of the heart and cardiovascular system.

In this chapter we will attempt to illustrate the present and future directions of neurohormonal modulation in right heart failure, the present and future directions of three dimensional ultrasonographical assessment in the right heart pathology and the future perspectives given by 3D printed casts and materials.


Right ventricule Future direction Physiopathology Right heart system 


  1. 1.
    Ferrara R, Mastrorilli F, Pasanisi G, Censi S, D’Aiello N, Fucili A, Valgimigli M, Ferrari R. Neurohormonal modulation in chronic heart failure. Eur Heart J Suppl. 2002;4:D3–D11.CrossRefGoogle Scholar
  2. 2.
    Davila DF, Nunez TJ, Odreman R, de Davila CA. Mechanisms of neurohormonal activation in chronic congestive heart failure: pathophysiology and therapeutic implications. Int J Cardiol. 2005;101:343–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Chatterjee K. Neurohormonal activation in congestive heart failure and the role of vasopressin. Am J Cardiol. 2005;95:8B–13B.CrossRefPubMedGoogle Scholar
  4. 4.
    Packer M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol. 1992;20:248–54.CrossRefPubMedGoogle Scholar
  5. 5.
    Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, Dupuis J, Long CS, Rubin LJ, Smart FW, Suzuki YJ, Gladwin M, Denholm EM, Gail DB. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114:1883–91.CrossRefGoogle Scholar
  6. 6.
    Nootens M, Kaufmann E, Rector T, Toher C, Judd D, Francis GS, Rich S. Neurohormonal activation in patients with right ventricular failure from pulmonary hypertension: relation to hemodynamic variables and endothelin levels. J Am Coll Cardiol. 1995;26:1581–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Lucreziotti S, Gavazzi A, Scelsi L, Inserra C, Klersy C, Campana C, Ghio S, Vanoli E, Tavazzi L. Five-minute recording of heart rate variability in severe chronic heart failure: correlates with right ventricular function and prognostic implications. Am Heart J. 2000;139:1088–95.CrossRefPubMedGoogle Scholar
  8. 8.
    Torbicki A, Kurzyna M, Kuca P, Fijalkowska A, Sikora J, Florczyk M, Pruszczyk P, Burakowski J, Wawrzynska L. Detectable serum cardiac troponin T as a marker of poor prognosis among patients with chronic precapillary pulmonary hypertension. Circulation. 2003;108:844–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Rousseau MF, Gurne O, Duprez D, Van MW, Robert A, Ahn S, Galanti L, Ketelslegers JM. Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. J Am Coll Cardiol. 2002;40:1596–601.CrossRefPubMedGoogle Scholar
  10. 10.
    Rich S, Seidlitz M, Dodin E, Osimani D, Judd D, Genthner D, McLaughlin V, Francis G. The short-term effects of digoxin in patients with right ventricular dysfunction from pulmonary hypertension. Chest. 1998;114:787–92.CrossRefPubMedGoogle Scholar
  11. 11.
    Galie N, Torbicki A, Barst R, Dartevelle P, Haworth S, Higenbottam T, Olschewski H, Peacock A, Pietra G, Rubin LJ, Simonneau G, Priori SG, Garcia MA, Blanc JJ, Budaj A, Cowie M, Dean V, Deckers J, Burgos EF, Lekakis J, Lindahl B, Mazzotta G, McGregor K, Morais J, Oto A, Smiseth OA, Barbera JA, Gibbs S, Hoeper M, Humbert M, Naeije R, Pepke-Zaba J. Guidelines on diagnosis and treatment of pulmonary arterial hypertension. The Task Force on Diagnosis and Treatment of Pulmonary Arterial Hypertension of the European Society of Cardiology. Eur Heart J. 2004;25:2243–78.CrossRefPubMedGoogle Scholar
  12. 12.
    Dekker DL, Piziali RL, Dong E Jr. A system for ultrasonically imaging the human heart in three dimensions. Comput Biomed Res. 1974;7:544–53.CrossRefPubMedGoogle Scholar
  13. 13.
    Papavassiliou DP, Parks WJ, Hopkins KL, Fyfe DA. Three dimensional echocardiographic measurement of the right ventricular volume in children with congenital heart disease validated by magnetic resonance imaging. J Am Soc Echocardiodr. 1998;11:770–7.CrossRefGoogle Scholar
  14. 14.
    Chauvel C, Bogino E, Clerc P, Fernandez G, Vernhet JC, Becat A, et al. Usefulness of three dimensional echocardiography fort the evaluation of mital prolaps. J Heart Valve Dis. 2000;9:341–9.PubMedGoogle Scholar
  15. 15.
    Sinha A, Nanda NC, Misra V, Khanna D, Dod HS, Vengala S, et al. Live three dimensional transthoracic echocardiographic assessment of transcatheter closure of atrial septal defect and patent foramen ovale. Echocardiography. 2004;21:749–53.CrossRefPubMedGoogle Scholar
  16. 16.
    Ishii M, Hashino K, Eto G, Tsutsumi T, Himeno W, Sughara Y, et al. Quantitative assessment of severity of ventricular septal defect by three dimensional reconstruction of color Doppler imaged vena contracta and flow convergence region. Circulation. 2001;103:664–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Dolk H, Loane M, Garne E. Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005. Circulation. 2011;123:841–9. Scholar
  18. 18.
    Giroud JM, Jacobs JP, Spicer D, Backer C, Martin GR, Franklin RC, et al. Report from the international society for nomenclature of paediatric and congenital heart disease: creation of a visual encyclopedia illustrating the terms and definitions of the international pediatric and congenital cardiac code. World J Pediatr Congenit Heart Surg. 2010;1(3):300–13. Scholar
  19. 19.
    Binder TM, Moertl D, Mundigler G, Rehak G, Franke M, Delle-Karth G, et al. Stereolithographic biomodeling to create tangible hard copies of cardiac structures from echocardiographic data: in vitro and in vivo validation. J Am Coll Cardiol. 2000;35:230–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Gilon D, Cape EG, Handschumacher MD, Song JK, Solheim J, VanAuker M, et al. Effect of three-dimensional valve shape on the hemodynamics of aortic stenosis: three-dimensional echocardiographic stereolithography and patient studies. J Am Coll Cardiol. 2002;40(8):1479–86.CrossRefPubMedGoogle Scholar
  21. 21.
    Mottl-Link S, Boettger T, Krueger JJ, Rietdorf U, Schnackenburg B, Ewert P, et al. Images in cardiovascular medicine. Cast of complex congenital heartmalformation in a living patient. Circulation. 2005;112:e356–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Kim MS, Hansgen AR, Wink O, Quaife RA, Carroll JD. Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation. 2008;117(18):2388–94. Scholar
  23. 23.
    Armillotta A, Bonhoeffer P, Dubini G, Ferragina S, Migliavacca F, Sala G, et al. Use of rapid prototyping models in the planning of percutaneous pulmonary valved stent implantation. Proc Inst Mech Eng H. 2007;221(4):407–16.CrossRefPubMedGoogle Scholar
  24. 24.
    Costello JP, Olivieri LJ, Krieger A, Thabit O, Marshall MB, Yoo SJ, et al. Utilizing three-dimensional printing technology to assess the feasibility of high fidelity synthetic ventricular septal defect models for simulation in medical education. World J Pediatr Congenit Heart Surg. 2014;5(3):421–6. Scholar
  25. 25.
    Kim MS, Hansgen AR, Carroll JD. Use of rapid prototypingin the care of patients with structural heart disease. Trends Cardiovasc Med. 2008;18(6):210–6. Scholar
  26. 26.
    Jacobs S, Grunert R, Mohr FW, Falk V. 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact Cardiovasc Thorac Surg. 2008;7(1):6–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Biglino G, Capelli C, Wray J, Schievano S, Leaver LK, Khambadkone S, et al. 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open. 2015;5(4):e007165. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Liviu Chiriac
    • 1
  • Razvan Roşulescu
    • 2
  1. 1.Cardiology DepartmentCentral Emergency Universitary Military HospitalBucharestRomania
  2. 2.Cardiology DepartmentNational Centre of Diagnosis and TreatmentBucharestRomania

Personalised recommendations