Right Ventricular Dysfunction in Cardiac Surgery

  • Ovidiu Lazăr


Right ventricular failure involves a great challenge due to the severity of this condition. In cardiac surgery RV failure is frequently associated with congenital disease and represent a high incidence among cardiac transplant patients when represent the main cause of graft failure. Appropriate hemodynamic monitoring and advanced pharmacological and mechanical support can reduce perioperative mortality in RV perioperative failure patients. Early postoperative care involves special measures to overcome compromised hemodynamics in RV failure cases.


Right ventricular failure Pulmonary hypertension Hemodynamics Transesophageal echocardiography Near infrared spectroscopy (NIRS) Ventricular assist devices (VAD) Extracorporeal membrane oxygenation (ECMO) 


  1. 1.
    Vonk-Noordegraaf A, Haddad F, Chin KM, et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013;62(25 Suppl):D22–33.CrossRefPubMedGoogle Scholar
  2. 2.
    Ribeiro A, Lindmarker P, Juhlin-Dannfelt A, et al. Echocardiography Doppler in pulmonary embolism: right ventricular dysfunction as a predictor of mortality rate. Am Heart J. 1997;134:479–87.CrossRefPubMedGoogle Scholar
  3. 3.
    Haddad F, Fisher P, Pham M, et al. Right ventricular dysfunction predicts poor outcome following hemodynamically compromising rejection. J Heart Lung Transplant. 2009;28:312–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Kaul TK, Fields BL. Postoperative acute refractory right ventricular failure: incidence, pathogenesis, management and prognosis. Cardiovasc Surg. 2000;8:1–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Nashef SA, Roques F, Michel P, et al. European system for cardiac operative risk evaluation (EuroSCORE). Eur J Cardiothorac Surg. 1999;16:9–13.CrossRefPubMedGoogle Scholar
  6. 6.
    Bernstein AD, Parsonnet V. Bedside estimation of risk as an aid for decisionmaking in cardiac surgery. Ann Thorac Surg. 2000;69:823–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Murkin JM, Adams SJ, Novick RJ, et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg. 2007;104:51–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Denault AY, Belisle S, Babin D, et al. Difficult separation from cardiopulmonary bypass and delta PCO2. Can J Anaesth. 2001;48:196–9.CrossRefPubMedGoogle Scholar
  9. 9.
    McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol. 2009;53:1573–619.CrossRefPubMedGoogle Scholar
  10. 10.
    Downing SW, Edmunds LH Jr. Release of vasoactive substances during cardiopulmonary bypass. Ann Thorac Surg. 1992;54:1236–43.CrossRefPubMedGoogle Scholar
  11. 11.
    Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117:1436–48.CrossRefPubMedGoogle Scholar
  12. 12.
    Galiè N, Hoeper MM, Humbert M, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2009;30:2493–537.CrossRefPubMedGoogle Scholar
  13. 13.
    Konstantinides S, Geibel A, Olschewski M, et al. Importance of cardiac troponins I and T in risk stratification of patients with acute pulmonary embolism. Circulation. 2002;106:1263–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Nagaya N, Nishikimi T, Okano Y, et al. Plasma brain natriuretic peptide levels increase in proportion to the extent of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol. 1998;31:202–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Nagaya N, Nishikimi T, Uematsu M, et al. Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation. 2000;102:865–70.CrossRefPubMedGoogle Scholar
  16. 16.
    Kaczyńska A, Kostrubiec M, Ciurzyński M, Pruszczyk P. B-type natriuretic peptide in acute pulmonary embolism. Clin Chim Acta. 2008;398:1–4.CrossRefPubMedGoogle Scholar
  17. 17.
    Kwong RY, Schussheim AE, Rekhraj S, et al. Detecting acute coronary syndrome in the emergency department with cardiac magnetic resonance imaging. Circulation. 2003;107:531–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Barash P, Cullen B, Stoelting R, et al., editors. Clinical anesthesia. 6th ed. Philadelphia: Lippincott Williams and Wilkins; 2009. p. 222.Google Scholar
  19. 19.
    Robitaille A, Denault AY, Couture P, et al. Importance of relative pulmonary hypertension in cardiac surgery: the mean systemic-to-pulmonary artery pressure ratio. J Cardiothorac Vasc Anesth. 2006;20:331–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Kinch JW, Ryan TJ. Right ventricular infarction. N Engl J Med. 1994;330:1211–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Goldstein JA, Barzilai B, Rosamond TL, et al. Determinants of hemodynamic compromise with severe right ventricular infarction. Circulation. 1990;82:359–68.CrossRefPubMedGoogle Scholar
  22. 22.
    Denault AY, Chaput M, Couture P, et al. Dynamic right ventricular outflow tract obstruction in cardiac surgery. J Thorac Cardiovasc Surg. 2006;132:43–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Haddad F, Couture P, Tousignant C, et al. The right ventricle in cardiac surgery, a perioperative perspective: I. Anatomy, physiology and assessment. Anesth Analg. 2009;108:407–21.CrossRefPubMedGoogle Scholar
  24. 24.
    Neira VM, Gardin L, Ryan G, et al. A transesophageal echocardiography examination clarifies the cause of cardiovascular collapse during scoliosis surgery in a child. Can J Anesth. 2011;58:451–5.CrossRefPubMedGoogle Scholar
  25. 25.
    Denault AY. Difficult separation from cardiopulmonary bypass: importance, mechanism and prevention (PhD Thesis: Montreal: Universitède Montrèal; 2010.
  26. 26.
    Denault AY, Couture P, Vegas A, et al. Transesophageal echocardiography multimedia manual, second edition: a perioperative transdisciplinary approach. New York: Informa Healthcare; 2010.Google Scholar
  27. 27.
    Denault AY, Ferraro P, Couture P, et al. Transesophageal echocardiography monitoring in the intensive care department: the management of hemodynamic instability secondary to thoracic tamponade after single lung transplantation. J Am Soc Echocardiogr. 2003;16:688–92.CrossRefPubMedGoogle Scholar
  28. 28.
    Porter TR, Shillcutt SK, Adams MS, Desjardins G, Glas KE, Olson JJ, Troughton RW. Guide for the use of echocardiography as a monitor for therapeutic intervention in adults: a report from the American Society of Echocardiography. J Am Soc Echocardiogr. 2015;28:40–56.CrossRefPubMedGoogle Scholar
  29. 29.
    Gomez CM, Palazzo MG. Pulmonary artery catheterization in anaesthesia and intensive care. Br J Anaesth. 1998;81:945–56.CrossRefPubMedGoogle Scholar
  30. 30.
    Fischer GW, Lin HM, Krol M, et al. Noninvasive cerebral oxygenation may predict outcome in patients undergoing aortic arch surgery. J Thorac Cardiovasc Surg. 2011;141:815–21.CrossRefPubMedGoogle Scholar
  31. 31.
    Maslow A, Stearns G, Bert A, et al. Monitoring end-tidal carbon dioxide during weaning from cardiopulmonary bypass in patients without significant lung disease. Anesth Analg. 2001;92:306–13.CrossRefPubMedGoogle Scholar
  32. 32.
    Baraka AS, Aouad MT, Jalbout MI, et al. End-tidal CO2 for prediction of cardiac output following weaning from cardiopulmonary bypass. J Extra Corpor Technol. 2004;36:255–7.PubMedGoogle Scholar
  33. 33.
    Zamanian RT, Haddad F, Doyle RL, Weinacker AB. Management strategies for patients with pulmonary hypertension in the intensive care unit. Crit Care Med. 2007;35:2037–50.CrossRefPubMedGoogle Scholar
  34. 34.
    Carollo DS, Nossaman BD, Ramadhyani U. Dexmedetomidine: a review of clinical applications. Curr Opin Anesthesiol. 2008;21:457–61.CrossRefGoogle Scholar
  35. 35.
    Halvorsen P, Raeder J, White PF, et al. The effect of dexamethasone on side effects after coronary revascularization procedures. Anesth Analg. 2003;96:1578–83.CrossRefPubMedGoogle Scholar
  36. 36.
    McIlroy DR, Myles PS, Phillips LE, Smith JA. Antifibrinolytics in cardiac surgical patients receiving aspirin: a systematic review and meta-analysis. Br J Anesth. 2009;102:168–78.CrossRefGoogle Scholar
  37. 37.
    Shann KG, Likosky DS, Murkin JM, et al. An evidence-based review of the practice of cardiopulmonary bypass in adults: focus on neurologic injury, glycemic control, hemodilution and the inflammatory response. J Thorac Cardiovasc Surg. 2006;132:283–90.CrossRefPubMedGoogle Scholar
  38. 38.
    Alghamdi AA, Albanna MJ, Guru V, Brister SJ. Does the use of erythropoietin reduce the risk of exposure to allogeneic blood transfusion in cardiac surgery? A systematic review and meta-analysis. J Card Surg. 2008;21:320–6.CrossRefGoogle Scholar
  39. 39.
    Chu D, Wei L, Subramaniam K. AATS/STS critical care symposium April 27; 2014.Google Scholar
  40. 40.
    Wan S, LeClerc JL, Vincent JL. Inflammatory response to cardiopulmonary bypass. Chest. 1997;112:676–92.CrossRefPubMedGoogle Scholar
  41. 41.
    Gravlee GP, Davis RF, Stammers AH, Ungerleider RM. Cardiopulmonary bypass: principles and practice, vol. 15. Philadelphia: Lippincot Williams & Wilkins; 2008. p. 321–37.Google Scholar
  42. 42.
    Edwards R, Treasure T, Hossein-Nia M, et al. A controlled trial of substrate-enhanced, warm reperfusion (“hot shot”) versus simple reperfusion. Ann Thorac Surg. 2000;69(2):551–5.CrossRefPubMedGoogle Scholar
  43. 43.
    Nussmeir NA. Management of temperature during and after cardiac surgery. Tex Heart Inst J. 2005;32:472–6.Google Scholar
  44. 44.
    Berberian G, Quinn TA, Kanter JP, et al. Optimized biventricular pacing in atrioventricular block after cardiac surgery. Ann Thorac Surg. 2005;80:870–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Denault AY, Haddad F, Jacobsohn E, Deschamps A. Perioperative rigft ventricular dysfunction. Curr Opin Anesth. 2013;26:1–7.CrossRefGoogle Scholar
  46. 46.
    Nussmeier NA. Management of temperature during and after cardiac surgery. Tex Heart Inst J. 2005;32(4):472–6.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Brauer A, Weyland W, Kazmaier S, Trostdorf U, Textor Z, Hellige G, et al. Efficacy of postoperative rewarming after cardiac surgery. Ann Thorac Cardiovasc Surg. 2004;10(3):171–7.PubMedGoogle Scholar
  48. 48.
    Karalapillai D, Story D, Hart GK, Bailey M, Pilcher D, Cooper DJ, Bellomo R. Postoperative hypothermia and patient outcomes after elective cardiac surgery. Anaesthesia. 2011;66(9):780–4.CrossRefPubMedGoogle Scholar
  49. 49.
    Struijis A, De Ruiter F, Weijerse A, Klein J, Bogers AJJC. Intravenous device feasible for controlled cooling and rewarming of individuals with abnormal body core temperature. Available at
  50. 50.
    Taguchi A, Ratnaraj J, Kabon B, Sharma N, Lenhardt R, Sessler DI, et al. Effects of a circulating-water garment and forced-air warming on body heat content and core temperature. Anesthesiology. 2004;100(5):1058–64.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Licker M, Schweizer A, Ralley FE. Thermoregulatory and metabolic responses following cardiac surgery. Eur J Anaesthesiol. 1996;13(5):502–10.CrossRefPubMedGoogle Scholar
  52. 52.
    Licker M, Hohn L, Ralley FE. Relation between oxygen uptake and tissue oxygen extraction following cardiac surgery. Eur J Anaesthesiol. 1996;13(6):562–70.CrossRefPubMedGoogle Scholar
  53. 53.
    De Witte J, Sessler DI. Perioperative shivering: physiology and pharmacology. Anesthesiology. 2002;96(2):467–84.CrossRefPubMedGoogle Scholar
  54. 54.
    Kranke P, Eberhart LH, Roewer N, Tramer MR. Pharmacological treatment of postoperative shivering: a quantitative systematic review of randomized controlled trials. Anesth Analg. 2002;94(2):453–60.CrossRefPubMedGoogle Scholar
  55. 55.
    Lenhardt R, Orhan-Sungur M, Komatsu R, Govinda R, Kasuya Y, Sessler DI, et al. Suppression of shivering during hypothermia using a novel drug combination in healthy volunteers. Anesthesiology. 2009;111(1):110–5.CrossRefPubMedGoogle Scholar
  56. 56.
    Presciutti M, Bader MK, Hepburn M. Shivering management during therapeutic temperature modulation: nurses’ perspective. Crit Care Nurse. 2012;32(1):33–42.CrossRefPubMedGoogle Scholar
  57. 57.
    Despotis GJ, Hogue CW Jr. Pathophysiology, prevention and treatment of bleeding after cardiac surgery: a primer for cardiologists and an update for the cardioyhoracic theam. Am J Cardiol. 1999;83:15B–30B.CrossRefGoogle Scholar
  58. 58.
    Mc Laughlin KE, Dunning J. In patients post cardiac surgery do high doses of protamine cause increased bleeding? Interact Cardiovasc Thorac Surg. 2003;2:424–6.CrossRefGoogle Scholar
  59. 59.
    Spiess BD. Treating heparin resistance with antithrombin or fresh frozen plasma. Ann Thorac Surg. 2008;85:2153–60.CrossRefPubMedGoogle Scholar
  60. 60.
    Bojar RM. Manual of perioperative care in adult cardiac surgery. 2011;9:347–73.Google Scholar
  61. 61.
    Henry D, Carless P, Fergusson D, Lanpacis A. The safety of aprotinin and lysine derived antifibrinolytic drugs in cardiac surgery: analysis. CMAJ. 2009;180:183–93.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Jalali A, Ghiari M, et al. Can plasma fibrinogen levels predict bleeding after coronary artery bypass grafting? Res Cardiovasc Med. 2014;3(3):e19521.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Chauchan S, Gharde P, Bisoi A, Kale S, Kiran U. A comparison of aminocaproic acid and tranexamic acid in adult cardiac surgery. Ann Card Anaesth. 2004;7:40–3.Google Scholar
  64. 64.
    Samantaray A, Hemanth N. Comparison of two ventilation modes in post-cardiac surgical patients. Saudi J Anaesth. 2011;5(2):173–8.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Itagaki S, Hosseinian L, Varghese R. Right ventricular failure after cardiac surgery: management strategies. Semin Thorac Cardiovasc Surg. 2012;24(3):188–94.CrossRefPubMedGoogle Scholar
  66. 66.
    Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117(13):1717–31.CrossRefGoogle Scholar
  67. 67.
    Winterhalter M, Antoniou T, Loukanov T. Management of adult patients with perioperative pulmonary hypertension: technical aspects and therapeutic options. Cardiology. 2010;116(1):3–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Fries D, Kozek-Langenecker S, Friesenecker B, Lorenz I. Comments on perioperative fluid therapy with tetrastarch and gelatin in cardiac surgery--a prospective sequential analysis. Crit Care Med. 2014;42(7):e537–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Engelman DT, et al. Impact of body mass index and albumin on morbidity and mortality after cardiac surgery. J Thorac Cardiovasc Surg. 1999;118:866–73.CrossRefPubMedGoogle Scholar
  70. 70.
    De la Cruz KI, et al. Hypoalbuminemia and long-term survival after coronary artery bypass: a propensity score analysis. Ann Thorac Surg. 2011;91:671–6.CrossRefPubMedGoogle Scholar
  71. 71.
    Lee EH, et al. Postoperative hypoalbuminemia is associated with outcome in patients undergoing off-pump coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2011;25:462–8.CrossRefPubMedGoogle Scholar
  72. 72.
    Ernest D, et al. Distribution of normal saline and 5% albumin infusions in cardiac surgical patients. Crit Care Med. 2001;29:2291–302.CrossRefGoogle Scholar
  73. 73.
    Jacob M, et al. The intravascular volume effect of Ringer’s lactate is below 20%: a prospective study in humans. Crit Care. 2012;16:R86.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Navickis RJ, et al. Effect of hydroxyethyl starch on bleeding after cardiopulmonary bypass: a meta-analysis of randomized trials. J Thorac Cardiovasc Surg. 2012;144:223–30.CrossRefPubMedGoogle Scholar
  75. 75.
    The SAFE Study Investigators. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–56.CrossRefGoogle Scholar
  76. 76.
    Yunos NM, et al. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308:1566–72.CrossRefGoogle Scholar
  77. 77.
    Wiedermann CJ, Joannidis M. Chloride-restrictive fluid administration and incidence of acute kidney injury. JAMA. 2013;309:543.CrossRefPubMedGoogle Scholar
  78. 78.
    Boldt J, Brosch C, Röhm K, Papsdorf M, Mengistu A. Comparison of the effects of gelatin and a modern hydroxyethyl starch solution on renal function and inflammatory response in elderly cardiac surgery patients. Br J Anaesth. 2008;100(4):457–64.CrossRefPubMedGoogle Scholar
  79. 79.
    Gandhi GY, Nuttall GA, Abel MD, et al. Intensive intraoperative insulin therapy versus conventional glucose management during cardiac surgery: a randomized controlled trial. Ann Intern Med. 2007;146:233–43.CrossRefPubMedGoogle Scholar
  80. 80.
    Boeken U, Feindt P, Litmathe J, Kurt M, Gams E. Intraaortic balloon pumping in patients with right ventricular insufficiency after cardiac surgery: parameters to predict failure of IABP support. Thorac Cardiovasc Surg. 2009;57(6):324–8. Epub 2009 Aug 25.CrossRefPubMedGoogle Scholar
  81. 81.
    Fischer S, Hoeper MM, Tomaszek S, et al. Bridge to lung transplantation with the extracorporeal membrane ventilator novalung in the veno-venous mode: the initial hannover experience. ASAIO J. 2007;53:168–70.CrossRefPubMedGoogle Scholar
  82. 82.
    Cheung AW, White CW, Davis MK, Freed DH. Short-term mechanical circulatory support for recovery from acute right ventricular failure: clinical outcomes. J Heart Lung Transplant. 2014;33:794–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ovidiu Lazăr
    • 1
  1. 1.Angiolife Unit, Anesthesia and Critical Care Department“Life Memorial Hospital”BucharestRomania

Personalised recommendations