Advertisement

Mechanical Circulatory Support for Right Ventricular Failure: RVADs

  • Kaan Kırali
  • Sabit Sarıkaya
  • Mehmet Aksüt
Chapter

Abstract

Heart failure is the basic and featured pathologic leading cause of death. From a clinical perspective, the most important objectives in caring for heart failure patients are diagnosis of the underlying mechanism and delivery of appropriate, effective treatment. In the majority of cases, the left ventricle is affected but the right ventricle functions normally until the end stage. Right ventricular failure (RVF) results from weakening of the right ventricular structures and/or by an increase in pulmonary vascular resistance. Post-implant RVF, a third type has been recognized in the last two decades. Right ventricular failure results in poor filling of the left ventricle and poor output, often necessitating additional right ventricular support in the form of inotropes or a mechanical right ventricular assist device (RVAD). Temporary mechanical support devices increase pulmonary blood circulation with or without extracorporeal oxygenation to provide adequate cardiac output. The preferred approach is to insert a temporary mechanical support device in percutaneous va-ECCPS configuration for acute RVF in the intensive care unit or in surgical vp-ECCS configuration for post-implant RVF in the operating room. For longer use, right ventricular or biventricular assist devices are used to provide circulatory support. Permanent RVADs provide a parallel or series artificial circulation to substitute for failed ventricles or they take over completely the pump function of a resected heart. Short-term RVADs are extracorporeal or paracorporeal pumps located outside the body, whereas durable RVADs are implanted inside the body. A novel development will be a true artificial heart without a need for anticoagulants; however, heart transplantation is still the gold standard for curative treatment.

Keywords

Mechanical circulatory support Right heart failure Extracorporeal membranous oxygenation Extracorporeal circulatory support Extracorporeal cardiopulmonary support Left ventricular bypass Right ventricular bypass Biventricular bypass Kırali circuit Total artificial heart Right ventricular assist device 

References

  1. 1.
    Mehra MR, Park MH, Landzberg MJ, Lala A, Waxman AB, International Right Heart Failure Foundation Scientific Working Group. Right heart failure: toward a common language. J Heart Lung Transplant. 2014;33(2):123–6.  https://doi.org/10.1016/j.healun.2013.10.015.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51(22):2163–72.  https://doi.org/10.1016/j.jacc.2008.03.009.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fitzpatrick JR 3rd, Frederick JR, Hsu VM, Kozin ED, O'Hara ML, Howell E, Dougherty D, McCormick RC, Laporte CA, Cohen JE, Southerland KW, Howard JL, Jessup ML, Morris RJ, Acker MA, Woo YJ. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27(12):1286–92.  https://doi.org/10.1016/j.healun.2008.09.00.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Atluri P, Goldstone AB, Fairman AS, MacArthur JW, Shudo Y, Cohen JE, Acker AL, Hiesinger W, Howard JL, Acker MA, Woo YJ. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96(3):857–63.  https://doi.org/10.1016/j.athoracsur.2013.03.099.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Drakos SG, Janicki L, Horne BD, Kfoury AG, Reid BB, Clayson S, Horton K, Haddad F, Li DY, Renlund DG, Fisher PW. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2010;105(7):1030–5.  https://doi.org/10.1016/j.amjcard.2009.11.026.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wang Y, Simon MA, Bonde P, Harris BU, Teuteberg JJ, Kormos RL, Antaki JF. Decision tree for adjuvant right ventricular support in patients receiving a left ventricular assist device. J Heart Lung Transplant. 2012;31(2):140–9.  https://doi.org/10.1016/j.healun.2011.11.003.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Shiga T, Kinugawa K, Imamura T, Kato N, Endo M, Inaba T, Maki H, Hatano M, Yao A, Nishimura T, Hirata Y, Kyo S, Ono M, Nagai R. Combination evaluation of preoperative risk indices predicts requirement of biventricular assist device. Circ J. 2012;76(12):2785–91.  https://doi.org/10.1253/circj.CJ-12-0231.CrossRefPubMedGoogle Scholar
  8. 8.
    Patil NP, Mohite PN, Sabashnikov A, Dhar D, Weymann A, Zeriouh M, Hards R, Hedger M, De Robertis F, Bahrami T, Amrani M, Rahman-Haley S, Banner NR, Popov AF, Simon AR. Preoperative predictors and outcomes of right ventricular assist device implantation after continuous-flow left ventricular assist device implantation. J Thorac Cardiovasc Surg. 2015;150(6):1651–8.  https://doi.org/10.1016/j.jtcvs.2015.07.090.CrossRefPubMedGoogle Scholar
  9. 9.
    Kalogeropoulos AP, Kelkar A, Weinberger JF, Morris AA, Georgiopoulou VV, Markham DW, Butler J, Vega JD, Smith AL. Validation of clinical scores for right ventricular failure prediction after implantation of continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2015;34(12):1595–603.  https://doi.org/10.1016/j.healun.2015.05.005.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bellavia D, Iacovoni A, Scardulla C, Moja L, Pilato M, Kushwaha SS, Senni M, Clemenza F, Agnese V, Falletta C, Romano G, Maalouf J, Dandel M. Prediction of right ventricular failure after ventricular assist device implant: systematic review and meta-analysis of observational studies. Eur J Heart Fail. 2017;19(7):926–46.  https://doi.org/10.1002/ejhf.733.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dandel M, Krabatsch T, Falk V. Left ventricular vs. biventricular mechanical support: decision making and strategies for avoidance of right heart failure after left ventricular assist device implantation. Int J Cardiol. 2015;198:241–50.  https://doi.org/10.1016/j.ijcard.2015.06.103.CrossRefPubMedGoogle Scholar
  12. 12.
    Mulaikal TA, Bell LH, Li B, Wagener G, Takayama H. Isolated right ventricular mechanical support: outcomes and prognosis. ASAIO J. 2017. (in press).  https://doi.org/10.1097/MAT.0000000000000597.
  13. 13.
    Harjola VP, Mebazaa A, Čelutkienė J, Bettex D, Bueno H, Chioncel O, Crespo-Leiro MG, Falk V, Filippatos G, Gibbs S, Leite-Moreira A, Lassus J, Masip J, Mueller C, Mullens W, Naeije R, Nordegraaf AV, Parissis J, Riley JP, Ristic A, Rosano G, Rudiger A, Ruschitzka F, Seferovic P, Sztrymf B, Vieillard-Baron A, Yilmaz MB, Konstantinides S. Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur J Heart Fail. 2016;18(3):226–41.  https://doi.org/10.1002/ejhf.478.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lang SA, O’Neill B, Waterworth P, Bilal H. Can the temporary use of right ventricular assist devices bridge patients with acute right ventricular failure after cardiac surgery to recovery? Interact Cardiovasc Thorac Surg. 2014;18(4):499–510.  https://doi.org/10.1093/icvts/ivt472.CrossRefPubMedGoogle Scholar
  15. 15.
    Noly PE, Kirsch M, Quessard A, Leger P, Pavie A, Amour J, Leprince P. Temporary right ventricular support following left ventricle assist device implantation: a comparison of two techniques. Interact Cardiovasc Thorac Surg. 2014;19(1):49–55.  https://doi.org/10.1093/icvts/ivu072.CrossRefPubMedGoogle Scholar
  16. 16.
    Kapur NK, Paruchuri V, Jagannathan A, Steinberg D, Chakrabarti AK, Pinto D, Aghili N, Najjar S, Finley J, Orr NM, Tempelhof M, Mudd JO, Kiernan MS, Pham DT, DeNofrio D. Mechanical circulatory support for right ventricular failure. JACC Heart Fail. 2013;1(2):127–34.  https://doi.org/10.1016/j.jchf.2013.01.007.CrossRefPubMedGoogle Scholar
  17. 17.
    Berman M, Tsui S, Vuylsteke A, Snell A, Colah S, Latimer R, Hall R, Arrowsmith JE, Kneeshaw J, Klein AA, Jenkins DP. Successful extracorporeal membrane oxygenation support after pulmonary thromboendarterectomy. Ann Thorac Surg. 2008;86(4):1261–7.  https://doi.org/10.1016/j.athoracsur.2008.06.037.CrossRefPubMedGoogle Scholar
  18. 18.
    Punnoose L, Burkhoff D, Rich S, Horn EM. Right ventricular assist device in end-stage pulmonary arterial hypertension: insights from a computational model of the cardiovascular system. Prog Cardiovasc Dis. 2012;55(2):234–243.e2.  https://doi.org/10.1016/j.pcad.2012.07.008.CrossRefPubMedGoogle Scholar
  19. 19.
    Merrill ED, Schoeneberg L, Sandesara P, Molitor-Kirsch E, O'Brien J Jr, Dai H, Raghuveer G. Outcomes after prolonged extracorporeal membrane oxygenation support in children with cardiac disease. Extracorporeal Life Support Organization registry study. J Thorac Cardiovasc Surg. 2014;148(2):582–8.  https://doi.org/10.1016/j.jtcvs.2013.09.038.CrossRefPubMedGoogle Scholar
  20. 20.
    Nagpal AD, Singal RK, Arora RC, Lamarche Y. Temporary mechanical circulatory support in cardiac critical care: a state of the art review and algorithm for device selection. Can J Cardiol. 2017;33(1):110–8.  https://doi.org/10.1016/j.cjca.2016.10.023.CrossRefPubMedGoogle Scholar
  21. 21.
    Saito S, Sakaguchi T, Miyagawa S, Nishi H, Yoshikawa Y, Fukushima S, Daimon T, Sawa Y. Recovery of right heart function with temporary right ventricular assist using a centrifugal pump in patients with severe biventricular failure. J Heart Lung Transplant. 2012;31(8):858–64.  https://doi.org/10.1016/j.healun.2012.03.002.CrossRefPubMedGoogle Scholar
  22. 22.
    Takayama H, Naka Y, Kodali SK, Vincent JA, Addonizio LJ, Jorde UP, Williams MR. A novel approach to percutaneous right-ventricular mechanical support. Eur J Cardiothorac Surg. 2012;41(2):423–6.  https://doi.org/10.1016/j.ejcts.2011.05.041.CrossRefPubMedGoogle Scholar
  23. 23.
    Kırali K, Yerlikhan ÖA, Hançer H. Invasive treatment in advanced (stage-D) heart failure. In: Kırali K, editor. Cardiomyopaties: types and treatments. Rijeka: InTech; 2017. p. 405–57.  https://doi.org/10.5572/67455.CrossRefGoogle Scholar
  24. 24.
    Herlihy JP, Loyalka P, Jayaraman G, Kar B, Gregoric ID. Extracorporeal membrane oxygenation using the TandemHeart System’s catheters. Tex Heart Inst J. 2009;36(4):337–41. PMCID: PMC2720287.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Atiemo AD, Conte JV, Heldman AW. Resuscitation and recovery from acute right ventricular failure using a percutaneous right ventricular assist device. Catheter Cardiovasc Interv. 2006;68(1):78–82.  https://doi.org/10.1002/ccd.20691.CrossRefPubMedGoogle Scholar
  26. 26.
    Rajdev S, Benza R, Misra V. Use of Tandem Heart as a temporary hemodynamic support option for severe pulmonary artery hypertension complicated by cardiogenic shock. J Invasive Cardiol. 2007;19(8):E226–9.PubMedGoogle Scholar
  27. 27.
    Schmack B, Weymann A, Popov AF, Patil NP, Sabashnikov A, Kremer J, Farag M, Brcic A, Lichtenstern C, Karck M, Ruhparwar A. Concurrent left ventricular assist device (LVAD) implantation and percutaneous temporary RVAD support via CardiacAssist Protek-Duo TandemHeart to preempt right heart failure. Med Sci Monit Basic Res. 2016;22:53–7.  https://doi.org/10.12659/MSMBR.898897.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Khani-Hanjani A, Loor G, Chamogeorgakis T, Shafii A, Mountis M, Hanna M, Soltesz E, Gonzalez-Stawinski GV. Case series using the ROTAFLOW system as a temporary right ventricular assist device after HeartMate II implantation. ASAIO J. 2013;59(4):456–60.  https://doi.org/10.1097/MAT.0b013e318291d133.CrossRefPubMedGoogle Scholar
  29. 29.
    Loforte A, Pilato E, Martin Suarez S, Folesani G, Jafrancesco G, Castrovinci S, Grigioni F, Marinelli G. RotaFlow and Centri Mag extracorporeal membrane oxygenation support systems as treatment strategies for refractory cardiogenic shock. J Card Surg. 2015;30(2):201–8.  https://doi.org/10.1111/jocs.12480.CrossRefPubMedGoogle Scholar
  30. 30.
    Khaliel F, Al Habeeb W, Saad E, Kjellman U. Use of Rotaflow pump for left ventricular assist device bridging for 15 weeks. Asian Cardiovasc Thorac Ann. 2014;22(2):205–7.  https://doi.org/10.1177/0218492312469200.CrossRefPubMedGoogle Scholar
  31. 31.
    Borisenko O, Wylie G, Payne J, Bjessmo S, Smith J, Yonan N, Firmin R. Thoratec CentriMag for temporary treatment of refractory cardiogenic shock or severe cardiopulmonary insufficiency: a systematic literature review and meta-analysis of observational studies. ASAIO J. 2014;60(5):487–97.  https://doi.org/10.1097/MAT.0000000000000117.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mohite PN, Zych B, Popov AF, Sabashnikov A, Sáez DG, Patil NP, Amrani M, Bahrami T, DeRobertis F, Maunz O, Marczin N, Banner NR, Simon AR. CentriMag short-term ventricular assist as a bridge to solution in patients with advanced heart failure: use beyond 30 days. Eur J Cardiothorac Surg. 2013;44(5):e310–5.  https://doi.org/10.1093/ejcts/ezt415.CrossRefPubMedGoogle Scholar
  33. 33.
    Cheung AW, White CW, Davis MK, Freed DH. Short-term mechanical circulatory support for recovery from acute right ventricular failure: clinical outcomes. J Heart Lung Transplant. 2014;33(8):794–9.  https://doi.org/10.1016/j.healun.2014.02.028.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Anderson MB, Goldstein J, Milano C, Morris LD, Kormos RL, Bhama J, Kapur NK, Bansal A, Garcia J, Baker JN, Silvestry S, Holman WL, Douglas PS, O’Neill W. Benefits of a novel percutaneous ventricular assist device for right heart failure: the prospective RECOVER RIGHT study of the Impella RP device. J Heart Lung Transplant. 2015;34(12):1549–60.  https://doi.org/10.1016/j.healun.2015.08.018.CrossRefPubMedGoogle Scholar
  35. 35.
    Yan I, Grahn H, Blankenberg S, Westermann D. Right ventricular temporal assist device for cardiac recompensation. ESC Heart Fail. 2017;4(3):376–8.  https://doi.org/10.1002/ehf2.12148.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kretzschmar D, Lauten A, Ferrari MW. In vitro evaluation of a novel pulsatile right heart assist device - the PERKAT system. Int J Artif Organs. 2015;38(10):537–41.  https://doi.org/10.5301/ijao.5000440.CrossRefPubMedGoogle Scholar
  37. 37.
    Kretzschmar D, Schulze PC, Ferrari MW. Hemodynamic performance of a novel right ventricular assist device (PERKAT). ASAIO J. 2017;63(2):123–7.  https://doi.org/10.1097/MAT.0000000000000464.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hsu PL, McIntyre M, Boehning F, Dang W, Parker J, Autschbach R, Schmitz-Rode T, Steinseifer U. In-series versus in-parallel mechanical circulatory support for the right heart: a simulation study. Artif Organs. 2016;40(6):561–7.  https://doi.org/10.1111/aor.12601.CrossRefPubMedGoogle Scholar
  39. 39.
    Gregory SD, Pearcy MJ, Fraser J, Timms D. Evaluation of inflow cannulation site for implantation of right-sided rotary ventricular assist device. Artif Organs. 2013;37(8):704–11.  https://doi.org/10.1111/aor.12067.CrossRefPubMedGoogle Scholar
  40. 40.
    Shehab S, Newton PJ, Allida SM, Jansz PC, Hayward CS. Biventricular mechanical support devices. Clinical perspectives. Expert Rev Med Devices. 2016;13(4):353–65.  https://doi.org/10.1586/17434440.2016.1154454.CrossRefPubMedGoogle Scholar
  41. 41.
    Krabatsch T, Potapov E, Stepanenko A, Schweiger M, Kukucka M, Huebler M, Hennig E, Hetzer R. Biventricular circulatory support with two miniaturized implantable assist devices. Circulation. 2011;124(11 Suppl):S179–86.  https://doi.org/10.1161/CIRCULATIONAHA.110.011502.CrossRefPubMedGoogle Scholar
  42. 42.
    Morales DL, Almond CS, Jaquiss RD, Rosenthal DN, Naftel DC, Massicotte MP, Humpl T, Turrentine MW, Tweddell JS, Cohen GA, Kroslowitz R, Devaney EJ, Canter CE, Fynn-Thompson F, Reinhartz O, Imamura M, Ghanayem NS, Buchholz H, Furness S, Mazor R, Gandhi SK, Fraser CD Jr. Bridging children of all sizes to cardiac transplantation: the initial multicenter North American experience with the Berlin Heart EXCOR ventricular assist device. J Heart Lung Transplant. 2011;30(1):1–8.  https://doi.org/10.1016/j.healun.2010.08.033.CrossRefPubMedGoogle Scholar
  43. 43.
    Loforte A, Potapov E, Krabatsch T, Musci M, Wend Y, Pasic M, Hatzer R. Levitronix CentriMag to Berlin Heart Excor: a “bridge to bridge” solution in refractory cardiogenic shock. ASAIO J. 2009;55(5):465–8.  https://doi.org/10.1097/MAT.0b013e3181b58c50.CrossRefPubMedGoogle Scholar
  44. 44.
    Tran HA, Pollema TL, Silva Enciso J, Greenberg BH, Barnard DD, Adler ED, Pretorius VG. Durable biventricular support using right atrial placement of the HeartWare HVAD. ASAIO J. 2017. (in print).  https://doi.org/10.1097/MAT.0000000000000645.
  45. 45.
    Shehab S, Macdonald PS, Keogh AM, Kotlyar E, Jabbour A, Robson D, Newton PJ, Rao S, Wang L, Allida S, Connellan M, Granger E, Dhital K, Spratt P, Jansz PC, Hayward CS. Long-term biventricular HeartWare ventricular assist device support--case series of right atrial and right ventricular implantation outcomes. J Heart Lung Transplant. 2016;35(4):466–73.  https://doi.org/10.1016/j.healun.2015.12.001.CrossRefPubMedGoogle Scholar
  46. 46.
    Bernhardt AM, De By TM, Reichenspurnera H, Deuse T. Isolated permanent right ventricular assist device implantation with the HeartWare continuous-flow ventricular assist device: first results from the European Registry for Patients with Mechanical Circulatory Support. Eur J Cardiothorac Surg. 2015;48(1):158–62.  https://doi.org/10.1093/ejcts/ezu406.CrossRefPubMedGoogle Scholar
  47. 47.
    Potapov EV, Kukucka M, Falk V, Krabatsch T. Biventricular support using 2 HeartMate 3 pumps. J Heart Lung Transplant. 2016;35(10):1268–70.  https://doi.org/10.1016/j.healun.2016.07.013.CrossRefPubMedGoogle Scholar
  48. 48.
    Cook JA, Shah KB, Quader MA, Cooke RH, Kasirajan V, Rao KK, Smallfield MC, Tchoukina I, Tang DG. The total artificial heart. J Thorac Dis. 2015;7(12):2172–80.  https://doi.org/10.3978/j.issn.2072-1439.2015.10.70.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Villa CR, Morales DLS. The total artificial heart in end-stage congenital heart disease. Front Physiol. 2017;8:131.  https://doi.org/10.3389/fphys.2017.00131.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Copeland JG. SynCardia Total Artificial Heart: update and future. Tex Heart Inst J. 2013;40(5):587–8. PMCID: PMC3853833.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Torregrossa G, Anyanwu A, Zucchetta F, Gerosa G. SynCardia: the total artificial heart. Ann Cardiothorac Surg. 2014;3(6):612–20.  https://doi.org/10.3978/j.issn.2225-319X.2014.11.07.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Wells D, Villa CR, Simón Morales DL. The 50/50 cc total artificial heart trial: extending the benefits of the total artificial heart to underserved populations. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2017;20:16–9.  https://doi.org/10.1053/j.pcsu.2016.09.004.CrossRefPubMedGoogle Scholar
  53. 53.
    Morales DLS, Lorts A, Rizwan R, Zafar F, Arabia FA, Villa CR. Worldwide experience with the Syncardia total artificial heart in the pediatric population. ASAIO J. 2017;63(4):518–9.  https://doi.org/10.1097/MAT.0000000000000504.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kaan Kırali
    • 1
  • Sabit Sarıkaya
    • 1
  • Mehmet Aksüt
    • 1
  1. 1.Department of Heart Transplantation and Mechanical Assist DeviceKartal Koşuyolu Education and Research HospitalIstanbulTurkey

Personalised recommendations