Advertisement

Importance of Extra-Cardiac Manifestations of Right Heart Failure Using Bedside Ultrasound

  • William Beaubien-Souligny
  • Nadia Bouabdallaoui
  • André Denault
Chapter

Abstract

Organ ischemia in the context of right ventricular dysfunction are the result of the profound hemodynamic alterations caused by a decrease in cardiac output and an elevation in central venous pressure. Performing a focused extra-cardiac ultrasound examination can reveal the impact of right ventricular failure by identifying signs of venous congestion in distal organs and might provide clinically relevant information to personalise management.

Keywords

Point-of-care ultrasound Doppler ultrasound Congestive heart failure Right ventricular failure Cardiorenal syndrome Cardiointestinal syndrome Venous congestion 

Abbreviations

ARDS

Acute respiratory distress syndrome

CI

Collapsibility index

CVP

Central venous pressure

EVLW

Extravascular lung water

ICP

Intra-cranial pressure

IJV

Internal jugular vein

IVC

Inferior vena cava

MCA

Middle cerebral artery

PF

Pulsatility fraction

PI

Pulsatility index

RAP

Right atrial pressure

TAPSE

Tricuspid annular plane systolic excursion

References

  1. 1.
    Ljungman S, Laragh JH, Cody RJ. Role of the kidney in congestive heart failure. Relationship of cardiac index to kidney function. Drugs. 1990;39(Suppl 4):10–21. discussion 2–4.CrossRefPubMedGoogle Scholar
  2. 2.
    Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53(7):582–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Breidthardt T, Irfan A, Klima T, Drexler B, Balmelli C, Arenja N, et al. Pathophysiology of lower extremity edema in acute heart failure revisited. Am J Med. 2012;125(11):1124.e1–8.CrossRefGoogle Scholar
  4. 4.
    Vinayak AG, Levitt J, Gehlbach B, Pohlman AS, Hall JB, Kress JP. Usefulness of the external jugular vein examination in detecting abnormal central venous pressure in critically ill patients. Arch Intern Med. 2006;166(19):2132–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Gunst M, Sperry J, Ghaemmaghami V, O’Keeffe T, Friese R, Frankel H. Bedside echocardiographic assessment for trauma/critical care: the BEAT exam. J Am Coll Surg. 2008;207(3):e1–3.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang J, Critchley LA. Inferior vena cava ultrasonography before general anesthesia can predict hypotension after induction. Anesthesiology. 2016;124(3):580–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713.CrossRefPubMedGoogle Scholar
  8. 8.
    Stawicki SP, Braslow BM, Panebianco NL, Kirkpatrick JN, Gracias VH, Hayden GE, et al. Intensivist use of hand-carried ultrasonography to measure IVC collapsibility in estimating intravascular volume status: correlations with CVP. J Am Coll Surg. 2009;209(1):55–61.CrossRefPubMedGoogle Scholar
  9. 9.
    Seo Y, Iida N, Yamamoto M, Machino-Ohtsuka T, Ishizu T, Aonuma K. Estimation of central venous pressure using the ratio of short to long diameter from cross-sectional images of the inferior vena cava. J Am Soc Echocardiogr. 2017;30(5):461–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Jue J, Chung W, Schiller NB. Does inferior vena cava size predict right atrial pressures in patients receiving mechanical ventilation? J Am Soc Echocardiogr. 1992;5(6):613–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Kircher BJ, Himelman RB, Schiller NB. Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol. 1990;66(4):493–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Brennan JM, Blair JE, Goonewardena S, Ronan A, Shah D, Vasaiwala S, et al. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr. 2007;20(7):857–61.CrossRefPubMedGoogle Scholar
  13. 13.
    Nagueh SF, Kopelen HA, Zoghbi WA. Relation of mean right atrial pressure to echocardiographic and Doppler parameters of right atrial and right ventricular function. Circulation. 1996;93(6):1160–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Muniz Pazeli J, Fagundes Vidigal D, Cestari Grossi T, Silva Fernandes NM, Colugnati F, Baumgratz de Paula R, et al. Can nephrologists use ultrasound to evaluate the inferior vena cava? A cross-sectional study of the agreement between a nephrologist and a cardiologist. Nephron Extra. 2014;4(1):82–8.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Beigel R, Cercek B, Luo H, Siegel RJ. Noninvasive evaluation of right atrial pressure. J Am Soc Echocardiogr. 2013;26(9):1033–42.CrossRefPubMedGoogle Scholar
  16. 16.
    Via G, Tavazzi G, Price S. Ten situations where inferior vena cava ultrasound may fail to accurately predict fluid responsiveness: a physiologically based point of view. Intensive Care Med. 2016;42(7):1164–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Barbier C, Loubieres Y, Schmit C, Hayon J, Ricome JL, Jardin F, et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30(9):1740–6.PubMedGoogle Scholar
  18. 18.
    Cook DJ, Simel DL. The Rational Clinical Examination. Does this patient have abnormal central venous pressure? JAMA. 1996;275(8):630–4.CrossRefPubMedGoogle Scholar
  19. 19.
    Avcil M, Kapci M, Dagli B, Omurlu IK, Ozluer E, Karaman K, et al. Comparision of ultrasound-based methods of jugular vein and inferior vena cava for estimating central venous pressure. Int J Clin Exp Med. 2015;8(7):10586–94.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Deol GR, Collett N, Ashby A, Schmidt GA. Ultrasound accurately reflects the jugular venous examination but underestimates central venous pressure. Chest. 2011;139(1):95–100.CrossRefPubMedGoogle Scholar
  21. 21.
    Vegas A, Denault A, Royse C. A bedside clinical and ultrasound-based approach to hemodynamic instability – part II: bedside ultrasound in hemodynamic shock: continuing professional development. Can J Anesth. 2014;61(11):1008–27.CrossRefPubMedGoogle Scholar
  22. 22.
    Hulin J, Aslanian P, Desjardins G, Belaidi M, Denault A. The critical importance of hepatic venous blood flow Doppler assessment for patients in shock. A A Case Rep. 2016;6(5):114–20.CrossRefPubMedGoogle Scholar
  23. 23.
    Abu-Yousef MM. Normal and respiratory variations of the hepatic and portal venous duplex Doppler waveforms with simultaneous electrocardiographic correlation. J Ultrasound Med. 1992;11(6):263–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Abu-Yousef MM. Duplex Doppler sonography of the hepatic vein in tricuspid regurgitation. AJR Am J Roentgenol. 1991;156(1):79–83.CrossRefPubMedGoogle Scholar
  25. 25.
    Scheinfeld MH, Bilali A, Koenigsberg M. Understanding the spectral Doppler waveform of the hepatic veins in health and disease. Radiographics. 2009;29(7):2081–98.CrossRefPubMedGoogle Scholar
  26. 26.
    Denault AY, Beaubien-Souligny W, Elmi-Sarabi M, Eljaiek R, El-Hamamsy I, Lamarche Y, et al. Clinical significance of portal hypertension diagnosed with bedside ultrasound after cardiac surgery. Anesth Analg. 2017;124(4):1109–15.CrossRefPubMedGoogle Scholar
  27. 27.
    Hu JT, Yang SS, Lai YC, Shih CY, Chang CW. Percentage of peak-to-peak pulsatility of portal blood flow can predict right-sided congestive heart failure. World J Gastroenterol. 2003;9(8):1828–31.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Rengo C, Brevetti G, Sorrentino G, D’Amato T, Imparato M, Vitale DF, et al. Portal vein pulsatility ratio provides a measure of right heart function in chronic heart failure. Ultrasound Med Biol. 1998;24(3):327–32.CrossRefPubMedGoogle Scholar
  29. 29.
    Catalano D, Caruso G, DiFazzio S, Carpinteri G, Scalisi N, Trovato GM. Portal vein pulsatility ratio and heart failure. J Clin Ultrasound. 1998;26(1):27–31.CrossRefPubMedGoogle Scholar
  30. 30.
    Styczynski G, Milewska A, Marczewska M, Sobieraj P, Sobczynska M, Dabrowski M, et al. Echocardiographic correlates of abnormal liver tests in patients with exacerbation of chronic heart failure. J Am Soc Echocardiogr. 2016;29(2):132–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Gallix BP, Taourel P, Dauzat M, Bruel JM, Lafortune M. Flow pulsatility in the portal venous system: a study of Doppler sonography in healthy adults. AJR Am J Roentgenol. 1997;169(1):141–4.CrossRefPubMedGoogle Scholar
  32. 32.
    Sundaram V, Fang JC. Gastrointestinal and liver issues in heart failure. Circulation. 2016;133(17):1696–703.CrossRefPubMedGoogle Scholar
  33. 33.
    Niebauer J, Volk HD, Kemp M, Dominguez M, Schumann RR, Rauchhaus M, et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet. 1999;353(9167):1838–42.CrossRefPubMedGoogle Scholar
  34. 34.
    Melenovsky V, Kotrc M, Borlaug BA, Marek T, Kovar J, Malek I, et al. Relationships between right ventricular function, body composition, and prognosis in advanced heart failure. J Am Coll Cardiol. 2013;62(18):1660–70.CrossRefPubMedGoogle Scholar
  35. 35.
    Valentova M, von Haehling S, Krause C, Ebner N, Steinbeck L, Cramer L, et al. Cardiac cachexia is associated with right ventricular failure and liver dysfunction. Int J Cardiol. 2013;169(3):219–24.CrossRefPubMedGoogle Scholar
  36. 36.
    Allgayer H, Braden B, Dietrich CF. Transabdominal ultrasound in inflammatory bowel disease. Conventional and recently developed techniques--update. Med Ultrason. 2011;13(4):302–13.PubMedGoogle Scholar
  37. 37.
    Valentova M, von Haehling S, Bauditz J, Doehner W, Ebner N, Bekfani T, et al. Intestinal congestion and right ventricular dysfunction: a link with appetite loss, inflammation, and cachexia in chronic heart failure. Eur Heart J. 2016;37(21):1684–91.CrossRefPubMedGoogle Scholar
  38. 38.
    Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Iida N, Seo Y, Sai S, Machino-Ohtsuka T, Yamamoto M, Ishizu T, et al. Clinical implications of intrarenal hemodynamic evaluation by Doppler ultrasonography in heart failure. JACC Heart Fail. 2016;4(8):674–82.CrossRefPubMedGoogle Scholar
  40. 40.
    Tang WH, Kitai T. Intrarenal venous flow: a window into the congestive kidney failure phenotype of heart failure? JACC Heart Fail. 2016;4(8):683–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Saugel B, Ringmaier S, Holzapfel K, Schuster T, Phillip V, Schmid RM, et al. Physical examination, central venous pressure, and chest radiography for the prediction of transpulmonary thermodilution-derived hemodynamic parameters in critically ill patients: a prospective trial. J Crit Care. 2011;26(4):402–10.CrossRefPubMedGoogle Scholar
  42. 42.
    Jambrik Z, Monti S, Coppola V, Agricola E, Mottola G, Miniati M, et al. Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water. Am J Cardiol. 2004;93(10):1265–70.CrossRefPubMedGoogle Scholar
  43. 43.
    Agricola E, Bove T, Oppizzi M, Marino G, Zangrillo A, Margonato A, et al. “Ultrasound comet-tail images”: a marker of pulmonary edema: a comparative study with wedge pressure and extravascular lung water. Chest. 2005;127(5):1690–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Lichtenstein D, Goldstein I, Mourgeon E, Cluzel P, Grenier P, Rouby JJ. Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology. 2004;100(1):9–15.CrossRefPubMedGoogle Scholar
  45. 45.
    Lichtenstein D, Meziere G. A lung ultrasound sign allowing bedside distinction between pulmonary edema and COPD: the comet-tail artifact. Intensive Care Med. 1998;24(12):1331–4.CrossRefPubMedGoogle Scholar
  46. 46.
    Prosen G, Klemen P, Strnad M, Grmec S. Combination of lung ultrasound (a comet-tail sign) and N-terminal pro-brain natriuretic peptide in differentiating acute heart failure from chronic obstructive pulmonary disease and asthma as cause of acute dyspnea in prehospital emergency setting. Crit Care. 2011;15(2):R114.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Miglioranza MH, Gargani L, Sant’Anna RT, Rover MM, Martins VM, Mantovani A, et al. Lung ultrasound for the evaluation of pulmonary congestion in outpatients: a comparison with clinical assessment, natriuretic peptides, and echocardiography. JACC Cardiovasc Imaging. 2013;6(11):1141–51.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Mallamaci F, Benedetto FA, Tripepi R, Rastelli S, Castellino P, Tripepi G, et al. Detection of pulmonary congestion by chest ultrasound in dialysis patients. JACC Cardiovasc Imaging. 2010;3(6):586–94.CrossRefPubMedGoogle Scholar
  49. 49.
    Hasan AA, Makhlouf HA. B-lines: transthoracic chest ultrasound signs useful in assessment of interstitial lung diseases. Ann Thorac Med. 2014;9(2):99–103.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Blackmore CC, Black WC, Dallas RV, Crow HC. Pleural fluid volume estimation: a chest radiograph prediction rule. Acad Radiol. 1996;3(2):103–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Xirouchaki N, Magkanas E, Vaporidi K, Kondili E, Plataki M, Patrianakos A, et al. Lung ultrasound in critically ill patients: comparison with bedside chest radiography. Intensive Care Med. 2011;37(9):1488–93.CrossRefPubMedGoogle Scholar
  52. 52.
    Vogels RL, Scheltens P, Schroeder-Tanka JM, Weinstein HC. Cognitive impairment in heart failure: a systematic review of the literature. Eur J Heart Fail. 2007;9(5):440–9.CrossRefPubMedGoogle Scholar
  53. 53.
    van den Hurk K, Reijmer YD, van den Berg E, Alssema M, Nijpels G, Kostense PJ, et al. Heart failure and cognitive function in the general population: the Hoorn Study. Eur J Heart Fail. 2011;13(12):1362–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Levin SN, Hajduk AM, McManus DD, Darling CE, Gurwitz JH, Spencer FA, et al. Cognitive status in patients hospitalized with acute decompensated heart failure. Am Heart J. 2014;168(6):917–23.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Honda S, Nagai T, Sugano Y, Okada A, Asaumi Y, Aiba T, et al. Prevalence, determinants, and prognostic significance of delirium in patients with acute heart failure. Int J Cardiol. 2016;222:521–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Scheuermann K, Thiel C, Thiel K, Klingert W, Hawerkamp E, Scheppach J, et al. Correlation of the intracranial pressure to the central venous pressure in the late phase of acute liver failure in a porcine model. Acta Neurochir Suppl. 2012;114:387–91.CrossRefPubMedGoogle Scholar
  57. 57.
    Kotlinska-Hasiec E, Czajkowski M, Rzecki Z, Stadnik A, Olszewski K, Rybojad B, et al. Disturbance in venous outflow from the cerebral circulation intensifies the release of blood-brain barrier injury biomarkers in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2014;28(2):328–35.CrossRefPubMedGoogle Scholar
  58. 58.
    Dubourg J, Javouhey E, Geeraerts T, Messerer M, Kassai B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2011;37(7):1059–68.CrossRefPubMedGoogle Scholar
  59. 59.
    Sreeram GM, Grocott HP, White WD, Newman MF, Stafford-Smith M. Transcranial Doppler emboli count predicts rise in creatinine after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2004;18(5):548–51.CrossRefPubMedGoogle Scholar
  60. 60.
    Nakae R, Yokota H, Yoshida D, Teramoto A. Transcranial Doppler ultrasonography for diagnosis of cerebral vasospasm after aneurysmal subarachnoid hemorrhage: mean blood flow velocity ratio of the ipsilateral and contralateral middle cerebral arteries. Neurosurgery. 2011;69(4):876–83; discussion 83.CrossRefPubMedGoogle Scholar
  61. 61.
    Chang JJ, Tsivgoulis G, Katsanos AH, Malkoff MD, Alexandrov AV. Diagnostic accuracy of transcranial Doppler for brain death confirmation: systematic review and meta-analysis. AJNR Am J Neuroradiol. 2016;37(3):408–14.CrossRefPubMedGoogle Scholar
  62. 62.
    Wang Y, Duan YY, Zhou HY, Yuan LJ, Zhang L, Wang W, et al. Middle cerebral arterial flow changes on transcranial color and spectral Doppler sonography in patients with increased intracranial pressure. J Ultrasound Med. 2014;33(12):2131–6.CrossRefPubMedGoogle Scholar
  63. 63.
    Prunet B, Asencio Y, Lacroix G, Montcriol A, Dagain A, Cotte J, et al. Noninvasive detection of elevated intracranial pressure using a portable ultrasound system. Am J Emerg Med. 2012;30(6):936–41.CrossRefPubMedGoogle Scholar
  64. 64.
    Wakerley BR, Kusuma Y, Yeo LL, Liang S, Kumar K, Sharma AK, et al. Usefulness of transcranial Doppler-derived cerebral hemodynamic parameters in the noninvasive assessment of intracranial pressure. J Neuroimaging. 2015;25(1):111–6.CrossRefPubMedGoogle Scholar
  65. 65.
    Couture EJ, Desjardins G, Denault AY. Transcranial Doppler monitoring guided by cranial two-dimensional ultrasonography. Can J Anesth. 2017;64(8):885–7. [Epub ahead of print].  https://doi.org/10.1007/s12630-017-0898-9.CrossRefPubMedGoogle Scholar
  66. 66.
    Arntfield R, Millington S, Ainsworth C, Arora R, Boyd J, Finlayson G, et al. Canadian recommendations for critical care ultrasound training and competency. Can Respir J. 2014;21(6):341–5.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mayo PH, Beaulieu Y, Doelken P, Feller-Kopman D, Harrod C, Kaplan A, et al. American College of Chest Physicians/La Societe de Reanimation de Langue Francaise statement on competence in critical care ultrasonography. Chest. 2009;135(4):1050–60.CrossRefPubMedGoogle Scholar
  68. 68.
    Expert Round Table on Ultrasound in ICU. International expert statement on training standards for critical care ultrasonography. Intensive Care Med. 2011;37(7):1077–83.CrossRefGoogle Scholar
  69. 69.
    Nisanevich V, Felsenstein I, Almogy G, Weissman C, Einav S, Matot I. Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology. 2005;103(1):25–32.CrossRefGoogle Scholar
  70. 70.
    Gieling RG, Ruijter JM, Maas AA, Van Den Bergh Weerman MA, Dingemans KP, ten Kate FJ, et al. Hepatic response to right ventricular pressure overload. Gastroenterology. 2004;127(4):1210–21.CrossRefPubMedGoogle Scholar
  71. 71.
    Brater DC, Day B, Burdette A, Anderson S. Bumetanide and furosemide in heart failure. Kidney Int. 1984;26(2):183–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL, et al. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12(3):R74.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009;76(4):422–7.CrossRefPubMedGoogle Scholar
  74. 74.
    Saito S, Uchino S, Takinami M, Uezono S, Bellomo R. Postoperative blood pressure deficit and acute kidney injury progression in vasopressor-dependent cardiovascular surgery patients. Crit Care. 2016;20(1):74.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, National Heart Lung and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75.CrossRefPubMedGoogle Scholar
  76. 76.
    Sakka SG, Klein M, Reinhart K, Meier-Hellmann A. Prognostic value of extravascular lung water in critically ill patients. Chest. 2002;122(6):2080–6.CrossRefPubMedGoogle Scholar
  77. 77.
    Warrillow SJ, Weinberg L, Parker F, Calzavacca P, Licari E, Aly A, et al. Perioperative fluid prescription, complications and outcomes in major elective open gastrointestinal surgery. Anaesth Intensive Care. 2010;38(2):259–65.PubMedGoogle Scholar
  78. 78.
    Parente D, Luis C, Veiga D, Silva H, Abelha F. Congestive heart failure as a determinant of postoperative delirium. Rev Port V. 2013;32(9):665–71.CrossRefPubMedGoogle Scholar
  79. 79.
    Madias JE. Apparent amelioration of bundle branch blocks and intraventricular conduction delays mediated by anasarca. J Electrocardiol. 2005;38(2):160–5.CrossRefPubMedGoogle Scholar
  80. 80.
    Brandstrup B, Tonnesen H, Beier-Holgersen R, Hjortso E, Ording H, Lindorff-Larsen K, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003;238(5):641–8.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Siva B, Hunt A, Boudville N. The sensitivity and specificity of ultrasound estimation of central venous pressure using the internal jugular vein. J Crit Care. 2012;27(3):315.e7–11.CrossRefGoogle Scholar
  82. 82.
    Denault AY, Couture P, Lamarche Y, Tardif JC, Vegas A. Basic transesophageal and critical care ultrasonography. London: CRC Press; 2017.CrossRefGoogle Scholar
  83. 83.
    Amsallem M, Kuznetsova T, Hanneman K, Denault A, Haddad F. Right heart imaging in patients with heart failure: a tale of two ventricles. Curr Opin Cardiol. 2016;31(5):469–82.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Beaubien-Souligny W, Bouchard J, Desjardins G, Lamarche Y, Liszkowski M, Robillard P, et al. Extracardiac signs of fluid overload in the critically ill cardiac patient: a focused evaluation using bedside ultrasound. Can J Cardiol. 2017;33(1):88–100.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • William Beaubien-Souligny
    • 1
  • Nadia Bouabdallaoui
    • 2
  • André Denault
    • 3
  1. 1.Department of MedicineUniversité de MontréalMontrealCanada
  2. 2.Department of CardiologyUniversité de MontréalMontrealCanada
  3. 3.Department of AnesthesiologyMontreal Heart InstituteMontrealCanada

Personalised recommendations