Advertisement

Right Heart in Dilated Cardiomyopathy

  • Anjali Chandra
  • Sami Merie
  • Diana Morvey
  • Yasemin Saylan
  • Ernst R. von Schwarz
Chapter

Abstract

Dilated cardiomyopathy (DCM) is a significant burden affecting 5 people in 100,000, it is also the most common cardiomyopathy encountered. The condition can be a result of underlying diseases, which can comprimise the heart's contractility such as any insult to the heart, for example several viral or bacterial infections can lead to myocarditis, whereas other agents such as alcohol or illicit drug use can exert direct cardiotoxic effects destabilizing the normal cardiac function. In many cases, however, no causing effect can be identified and thus, the condition is referred to as, idiopathic non ischemic (dilated) cardiomyopathy. This chapter is dedicated to understand the etiology, pathogenesis, clinical manifestation, diagnosis and treatment of DCM. Although left ventricular dysfunction is seen as the primary outcome of the disease, the right heart function and dysfunction does plays an important role. Physical examination, a complete history and assessment of current symtoms as well as an electrocardiogram, laboratory testing including metabolic panel, brain natriuretic peptide levels and echocardiogram are mainly utilized in the initial diagnostic work-up if cardiomyopathy as a reason for heart failure symptoms is suspected. Due to subtle symptoms of the disease patients oftentimes do not seek medical advice early in the course of the disease but only after severe and debilitating heart failure symptoms occur. Modern therapy is tailored to 1) alleviate symptoms, 2) improve outcomes and reduce mortality and morbidity, and 3) remove or ease the underlying causes in cases of secondary DCM. Whereas vasodilators such as nitrates and diuretics are often the first-line therapy to ease symptoms of shortness of breath and volume overload, early treatment with Angiotensin Converting Enzyme Inhibitors (ACEI) and Angiotensin Receptor Blockers (ARB) is initiated in order to used to prevent cardiac remodeling. Beta blockers have shown promising results to potentially reverse ventricular dilatation and further prevention of structural changes.

Keywords

CardiomyopathyHeart failure Cardiac remodeling 

References

  1. 1.
    Towbin JA. Inherited cardiomyopathies. Circ J. 2014;78(10):2347–56.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Dadson K, Hauck L, Billia F. Molecular mechanisms in cardiomyopathy. Clin Sci. 2017;131(13):1375–92.  https://doi.org/10.1042/CS20160170.CrossRefPubMedGoogle Scholar
  3. 3.
    Mayosi BM, Somers K. Cardiomyopathy in Africa: heredity versus environment. Cardiovasc J Afr. 2007;18(3):175–9.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Ackerman MJ, Banner RN, Christodoulou D, Cirino AL, Conner L, Di Lenarda A, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366:619–28.  https://doi.org/10.1056/NEJMoa1110186.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chauveau C, Rowell J, Ferreiro A. A rising titan: TTN review and mutation update. Hum Mutat. 2014;35:1046–59.  https://doi.org/10.1002/humu.22611.CrossRefPubMedGoogle Scholar
  6. 6.
    Walsh R, Thomson KL, Ware JS, Funke BH, Woodley J, McGuire KJ, et al. Reassessment of Mendelian gene pathogenicity using 7,855 cardiomyopathy cases and 60,706 reference samples. Genet Med. 2017;19(2):192–203.  https://doi.org/10.1038/gim.2016.90.CrossRefPubMedGoogle Scholar
  7. 7.
    Knöll R, Linke WA, Zou P, Miocic S, Kostin S, Buyandelger B, et al. Telethonin deficiency is associated with maladaptation to biomechanical stress in the mammalian heart. Circ Res. 2011;109(7):758–69.  https://doi.org/10.1161/CIRCRESAHA.111.245787.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL, Yap SV, Bloch RJ. Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol Rev. 2009;89(4):1217–67.  https://doi.org/10.1152/physrev.00017.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Muhle-Goll C, Habeck M, Cazorla O, Nilges M, Labeit S, Granzier H. Structural and functional studies of titin’s fn3 modules reveal conserved surface patterns and binding to myosin S1—a possible role in the Frank-Starling mechanism of the heart. J Mol Biol. 2001.  https://doi.org/10.1006/jmbi.2001.5017.
  10. 10.
    Bogomolovas J, Gasch A, Simkovic F, Rigden DJ, Labeit S, Mayans O. Titin kinase is an inactive pseudokinase scaffold that supports MuRF1 recruitment to the sarcomeric M-line. Open Biol. 2014;4(5):140041.  https://doi.org/10.1098/rsob.140041.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Roberts AM, Ware JS, Herman DS, Schafer S, Baksi J, Bick AG, et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci Transl Med. 2015;7(270):270ra6.  https://doi.org/10.1126/scitranslmed.3010134.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Abraityte A, Lunde IG, Askevold ET, Michelsen AE, Christensen G, Aukrust P, et al. Wnt5a is associated with right ventricular dysfunction and adverse outcome in dilated cardiomyopathy. Sci Rep. 2017;7:3490.  https://doi.org/10.1038/s41598-017-03625-9.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Burke AP. Arrhythmogenic right ventricular cardiomyopathy pathology. Overview, Etiology Epidemiology. News and Perspective. 2016. https://emedicine.medscape.com/article/2017949-overview. 1 July 2017.
  14. 14.
    Sanchez-Jimenez EF. Initial clinical presentation of Takotsubo cardiomyopathy with-a focus on electrocardiographic changes: a literature review of cases. World J Cardiol. 2013;5(7):228–41.  https://doi.org/10.4330/wjc.v5.i7.228.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fett JD. Peripartum cardiomyopathy: a puzzle closer to solution. World J Cardiol. 2014;6(3):87–99.  https://doi.org/10.4330/wjc.v6.i3.87.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ellis ER, Josephson ME. What about tachycardia-induced cardiomyopathy? Arrhythm Electrophysiol Rev. 2013;2(2):82–90.  https://doi.org/10.15420/aer.2013.2.2.82.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Krejci J, Mlejnek D, Sochorova D, Nemec P. Inflammatory cardiomyopathy: a current view on the pathophysiology, diagnosis, and treatment. Biomed Res Int. 2016.  https://doi.org/10.1155/2016/4087632.
  18. 18.
    Kuhl U, Pauschinger M, Noutsias M, Seeberg B, Bock T, Lassner D, Poller W, Kandolf R, Schultheiss HP. High prevalence of viral genomes and multiple viral infections in the myocardium of adults with idiopathic left ventricular dysfunction. Circulation. 2005;111(7):887–93.  https://doi.org/10.1161/01.CIR.0000155616.07901.35.CrossRefPubMedGoogle Scholar
  19. 19.
    N'Guyen Y, Lesaffre F, Metz D, Tassan S, Saade Y, Boulagnon C, Fornes P, Renois F, Andreoletti L. Enterovirus but not Parvovirus B19 is associated with idiopathic dilated cardiomyopathy and endomyocardial CD3, CD68, or HLA-DR expression. J Med Virol. 2017;89:55–63.  https://doi.org/10.1002/jmv.24600.CrossRefPubMedGoogle Scholar
  20. 20.
    Caforio ALP, Bottaro S, Iliceto S. Dilated cardiomyopathy (DCM) and myocarditis: classification, clinical and autoimmune features. Appl Cardiopulm Pathophysiol. 2012;16:82–95. http://www.applied-cardiopulmonary-pathophysiology.com/fileadmin/downloads/acp-2012-1_20120301/06_caforio.pdf.Google Scholar
  21. 21.
    Kransdorf EP, Fishbein MC, Czer LS, Patel JK, Velleca A, et al. Pathology of chronic chagas cardiomyopathy in the United States: a detailed review of 13 Cardiectomy cases. Am J Clin Pathol. 2016;146:191–8.  https://doi.org/10.1093/AJCP/AQ098.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang M, Tavora F, Huebner T, Heath J, Burke A. Allograft pathology in patients transplanted for idiopathic dilated cardiomyopathy. Am J Surg Pathol. 2012;36(3):389–95.  https://doi.org/10.1097/PAS.0b013e31823b02f5.CrossRefPubMedGoogle Scholar
  23. 23.
    Sisakian H. Cardiomyopathies: evolution of pathogenesis concepts and potential for new therapies. World J Cardiol. 2014;6(6):478–94.  https://doi.org/10.4330/wjc.v6.i6.478.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kadish A, Rubenstein JC. Connecting the dots: the relevance of scar in non-ischemic cardiomyopathy. J Am Coll Cardiol. 2009;53(13):1146–7.  https://doi.org/10.1016/j.jacc.2008.12.027.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Agabegi ED, Agabegi SS. Chap. 1: diseases of the cardiovascular system/section: valvular heart disease. In: Step-up to medicine, Step-up series. Philadelphia: Lippincott Williams & Wilkins; 2008. isbn:0-7817-7153-6.Google Scholar
  26. 26.
    Rivero-Carvallo JM. Signo para el diagnostico de las insuficiencias tricuspideas. Arch Inst Cardiol Mex. 1946;16:531.PubMedGoogle Scholar
  27. 27.
    Japp AG, Gulati A, Cook SA, Cowie MR, Prasad SK. The diagnosis and evaluation of DCM. J Am Coll Cardiol. 2016;67(25):2996–3010.  https://doi.org/10.1016/j.jacc.2016.03.590.CrossRefPubMedGoogle Scholar
  28. 28.
    Mathew T, Williams L, Navaratnam G, Rana B, Wheeler R, Collins K, British Society of Echocardiography Education Committee, et al. Diagnosis and assessment of dilated cardiomyopathy: a guideline protocol from the British Society of Echocardiography. Echo Res Pract. 2017;4(2):G1–G13.  https://doi.org/10.1530/ERP-16-0037.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bozkurt B, Colvine M, Cook J, Cooper LT, Deswal A, Fonorow GC, Francis GS, et al. Current diagnostic and treatment strategies for specific dilated cardiomyopathies. Circulation. 2016;2016(134):e579–646.  https://doi.org/10.1161/CIR.0000000000000455.CrossRefGoogle Scholar
  30. 30.
    Reis Filho JR d AR, Cardoso JN, Cardoso CM d R, Pereira-Barretto AC. Reverse cardiac remodeling: a marker of better prognosis in heart failure. Arq Bras Cardiol. 2015;104(6):502–6.  https://doi.org/10.5935/abc.20150025.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wong M, Staszewsky L, Latini R, Barlera S, Glazer R, Aknay N, Hester A, Anand I, Cohn JN. Severity of left ventricular remodeling defines outcomes and response to therapy in heart failure Val-HeFT echocardiographic data. J Am Coll Cardiol. 2004;43(11):2022–7.  https://doi.org/10.1016/j.jacc.2003.12.053.CrossRefPubMedGoogle Scholar
  32. 32.
    Konstam MA, Patten RD, Thomas I, Ramahi T, La Bresh K, Goldman S, Lewis W, et al. Effects of losartan and captopril on left ventricular volumes in elderly patients with heart failure: results of the ELITE ventricular function sub study. Am Heart J. 2000;139(6):1081–7.  https://doi.org/10.1067/mhj.2000.105302.CrossRefPubMedGoogle Scholar
  33. 33.
    Hoshikawa E, Matsumura Y, Kubo T, Okawa M, Yamasaki N, et al. Effect of left ventricular reverse remodeling on long-term prognosis after therapy with angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers and betablockers in patients with idiopathic dilated cardiomyopathy. Am J Cardiol. 2011;107(7):1065–70.CrossRefPubMedGoogle Scholar
  34. 34.
    Khattar RS. Effects of ACEI and beta blockers on left ventricular remodeling in chronic heart failure. Minerva Cardioangiol. 2003;51(2):143–54.  https://doi.org/10.1016/j.amjcard.2010.11.033.CrossRefPubMedGoogle Scholar
  35. 35.
    Siddiqi OK, Ruberg FL. Cardiac amyloidosis: an update on pathophysiology, diagnosis and treatment. Trends Cardiovasc Med. 2017.  https://doi.org/10.1016/j.tcm.2017.07.004.
  36. 36.
    Papadakis MA, Mcphee SJ, Rabow MW. Current medical diagnosis and treatment 2017. 56th ed. New York: McGraw Hill Education; 2017.Google Scholar
  37. 37.
    Lund LH, Edwards LB, Kuvheryevaya AY, et al. The registery of the international society for heart and lung transplantation: 30th official adult heart transplant report 2013. J Heart Lung Transplant. 2013;32(10):951–64.CrossRefPubMedGoogle Scholar
  38. 38.
    Jawitz OK. Outcomes following heart transplantation in a national cohort: an analysis of the organ procurement and transplantation network’s database. Yale University-EliScholar. 2016.Google Scholar
  39. 39.
    Fitchett DH, Sugrue DD, MacArthur CG, Oakley CM. Right ventricular dilated cardiomyopathy. Br Heart J. 1984;51(1):25–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Anjali Chandra
    • 1
  • Sami Merie
    • 1
  • Diana Morvey
    • 1
  • Yasemin Saylan
    • 1
  • Ernst R. von Schwarz
    • 1
    • 2
    • 3
    • 4
  1. 1.Heart Institute, Southern California HospitalCulver CityUSA
  2. 2.Cedars-Sinai Medical CenterLos AngelesUSA
  3. 3.University of California Los AngelesLos AngelesUSA
  4. 4.University of California RiversideRiversideUSA

Personalised recommendations