Advertisement

Phylogeny, Taxonomy, and Geographic Diversity of Diurnal Raptors: Falconiformes, Accipitriformes, and Cathartiformes

  • David P. Mindell
  • Jérôme Fuchs
  • Jeff A. Johnson
Chapter

Abstract

An ideal taxonomy for organisms incorporates comprehensive knowledge of existing species diversity and their phylogenetic relationships. This knowledge is used in developing consistent criteria for recognizing and naming species as well as monophyletic groups (clades) above the species level, including genera, families, and orders. This provides well-justified, consensus names for taxa that can be used globally in studying and managing the health of species and their populations. Having the taxonomic hierarchy of names reflects evolutionary history and advances our understanding of the origins and causes of change over time in biological diversity.

References

  1. Amadon D, Bull J (1988) Hawks and owls of the world: an annotated list of species. Proc Western Found Vert Zool 3:297–330Google Scholar
  2. Arshad M, Gonzalez J, El-Sayed AA, Osborne T, Wink M (2009) Phylogeny and phylogeography of critically endangered Gyps species based on nuclear and mitochondrial markers. J Ornithol 150:419–430CrossRefGoogle Scholar
  3. Avise JC, Johns GC (1999) Proposal for a standardized temporal scheme of biological classification for extant species. Proc Natl Acad Sci U S A 96:7358–7363CrossRefPubMedPubMedCentralGoogle Scholar
  4. Avise JC, Liu J-X (2011) On the temporal inconsistencies of Linnean taxonomic ranks. Biol J Linn Soc 102:707–714CrossRefGoogle Scholar
  5. Barrowclough GF, Groth JG, Lai JE, Tsang SM (2014) The phylogenetic relationships of the endemic genera of the Australo–Papuan hawks. J Raptor Research 48:36–43CrossRefGoogle Scholar
  6. Barrowclough GF, Cracraft J, Klicka J, Zink RM (2016) How many kinds of birds are there and why does it matter? PLoS One 11(11):e0166307CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bigelow RS (1956) Monophyletic classification and evolution. Syst Zool 5:145–146CrossRefGoogle Scholar
  8. BirdLife International and Handbook of the Birds of the World (2016) Bird species distribution maps of the world. Version 6.0, http://datazone.birdlife.org/
  9. Boev Z (2012) Circaetus rhodopensis sp. n. (Aves: Accipitriformes) from the late Miocene of Hadzhidimovo (SW Bulgaria). Acta Zool Bulg 64:5–12Google Scholar
  10. Breman FC, Jordaens K, Sonet G, Nagy ZT, Van Houdt J, Louette M (2013) DNA barcoding and evolutionary relationships in Accipiter Brisson, 1760 (Aves, Falconiformes: Accipitridae) with a focus on African and Eurasian representatives. J Ornithol 154:265–287CrossRefGoogle Scholar
  11. Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158CrossRefGoogle Scholar
  12. Chesser RT, Burns KJ, Cicero C, Dunn JL, Kratter AW, Lovette IJ, Rasmussen PC, Remsen JV Jr, Rising JD, Stotz DF, Winker K (2016) Fifty-seventh supplement to the American Ornithologists’ Union check-list of north American birds. Auk 133(3):544–560CrossRefGoogle Scholar
  13. Cooper N, Rodríguez J, Purvis A (2008) A common tendency for phylogenetic overdispersion in mammalian assemblages. Proc R Soc B 275:2031–2037CrossRefPubMedGoogle Scholar
  14. Cracraft J, Barker FK, Braun MJ, Harshman J, Dyke G, Feinstein J, Stanley S, Cibois A, Schikler P, Beresford P, García-Moreno J, Sorenson MD, Yuri T, Mindell DP (2004) Phylogenetic relationships among modern birds (Neornithes): toward an avian tree of life. In: Cracraft J, Donoghue MJ (eds) Assembling the tree of life. Oxford Univ Press, New York, pp 468–489Google Scholar
  15. do Amaral FSR, Miller MJ, Silveira LF, Bermingham E, Wajntal A (2006) Polyphyly of the hawk genera Leucopternis and Buteogallus (Aves, Accipitridae): multiple habitat shifts during the Neotropical buteonine diversification. BMC Evol Biol 6:10. https://doi.org/10.1186/1471-2148-6-10 CrossRefPubMedCentralGoogle Scholar
  16. do Amaral FSR, Sheldon FH, Gamauf A, Haring E, Riesing M, Silveira LF, Wajntal A (2009) Patterns and processes of diversification in a widespread and ecologically diverse avian group, the buteonine hawks (Aves, Accipitridae). Mol Phylogenet Evol 53(3):703–715CrossRefPubMedGoogle Scholar
  17. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973CrossRefPubMedPubMedCentralGoogle Scholar
  18. Edwards EJ, Osborne CP, CAE S, Smith SA, C4 Grasses Consortium (2010) The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:587–591CrossRefPubMedGoogle Scholar
  19. Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G (2006) Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett 2:543–547CrossRefPubMedPubMedCentralGoogle Scholar
  20. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61(1):1–10CrossRefGoogle Scholar
  21. Fuchs J, Chen S, Johnson JA, Mindell DP (2011) Pliocene diversification within the south American forest-falcons (Falconidae: Micrastur). Mol Phylogenet Evol 60:398–407CrossRefPubMedGoogle Scholar
  22. Fuchs J, Johnson JA, Mindell DP (2012) Molecular systematics of the caracaras and allies (Falconidae: Polyborinae) inferred from mitochondrial and nuclear sequence data. Ibis 154:520–532CrossRefGoogle Scholar
  23. Fuchs J, Johnson JA, Mindell DP (2015) Rapid diversification of falcons (Aves: Falconidae) due to expansion of open habitats in the late Miocene. Mol Phylogenet Evol 82:166–182CrossRefPubMedGoogle Scholar
  24. Gamauf A, Haring E (2004) Molecular phylogeny and biogeography of honey-buzzards (genera Pernis and Henicopernis). J Zool Syst Evol Res 42(2):145–153CrossRefGoogle Scholar
  25. Gamauf A, Harring E (2005) Phylogeny of old world Perninae (Accipitridae) based on mitochondrial DNA sequences. Zool Med Leiden 79–3:175–177Google Scholar
  26. Gamauf A, Gjershaug J-O, Røv N, Kvaløy K, Haring E (2005) Molecular phylogeny of the hawk-eagles (genus Spizaetus). Zool Med Leiden 79-3:179–180Google Scholar
  27. Gerhold P, Cahill Jr JF, Winter M, Bartish IV, Prinzing A (2015) Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct Ecol 29:600–614CrossRefGoogle Scholar
  28. Gill F, Donsker D (eds) (2017) IOC World Bird List (v 7.1). https://doi.org/10.14344/IOC.ML.7.1
  29. Griffiths CS (1999) Phylogeny of the Falconidae inferred from molecular and morphological data. Auk 116:116–130CrossRefGoogle Scholar
  30. Griffiths CS, Barrowclough GF, Groth JG, Mertz L (2004) Phylogeny of the Falconidae (Aves): a comparison of the efficacy of morphological, mitochondrial, and nuclear data. Mol Phylogenet Evol 32(1):101–109CrossRefPubMedGoogle Scholar
  31. Griffiths CS, Barrowclough GF, Groth JG, Mertz LA (2007) Phylogeny, diversity, and classification of the Accipitridae based on DNA sequences of the RAG-1 exon. J Avian Biol 38(5):587–602CrossRefGoogle Scholar
  32. Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han KL, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320(5884):1763–1768CrossRefPubMedGoogle Scholar
  33. Haring E, Kvaløy K, Gjershaug J-O, Røv N, Gamauf A (2007) Convergent evolution and paraphyly of the hawk-eagles of the genus Spizaetus (Aves, Accipitridae) – phylogenetic analysis based on mitochondrial markers. J Zool Syst Evol Res 45:353–365CrossRefGoogle Scholar
  34. Helbig AJ, Kocum AJ, Seibold A, Braun MJ (2005) A multi-gene phylogeny of aquiline eagles (Aves: Accipitriformes) reveals extensive paraphyly at the genus level. Mol Phylogenet Evol 35:147–164CrossRefPubMedGoogle Scholar
  35. Hennig W (1966) Phylogenetic systematics. U. Illinois Press, UrbanaGoogle Scholar
  36. HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012) Rethinking community assembly through the lens of coexistence theory. Annu Rev Ecol Evol Syst 43:227–248CrossRefGoogle Scholar
  37. Holt BG, Jønsson KA (2014) Reconciling hierarchical taxonomy with molecular phylogenies. Syst Biol 63(6):1010–1017CrossRefPubMedGoogle Scholar
  38. Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P et al (2014) Whole genome analyses resolve the early branches in the tree of life of modern birds. Science 346:1320–1331CrossRefPubMedPubMedCentralGoogle Scholar
  39. Jenkins CN, Pimm SL, Joppa LN (2013) Global patterns of terrestrial vertebrate diversity and conservation. Proc Natl Acad Sci U S A 110:E2602–E2610CrossRefPubMedPubMedCentralGoogle Scholar
  40. Johnson JA, Lerner HR, Rasmussen PC, Mindell DP (2006) Systematics within Gyps vultures: a clade at risk. BMC Evol Biol 6(1):1. https://doi.org/10.1186/1471-2148-6-65 CrossRefGoogle Scholar
  41. Johnson JA, Thorstrom R, Mindell DP (2007a) Systematics and conservation of the hook-billed kite including the island taxa from Cuba and Grenada. Anim Conserv 10(3):349–359CrossRefGoogle Scholar
  42. Johnson JA, Burnham KK, Burnham WA, Mindell DP (2007b) Genetic structure identified among continental and island populations of gyrfalcons. Mol Ecol 16:3145–3160CrossRefPubMedGoogle Scholar
  43. Johnson JA, Brown JW, Fuchs J, Mindell DP (2016) Multi-locus phylogenetic inference among new world vultures (Aves: Cathartidae). Mol Phylogenet Evol 105:193–199CrossRefPubMedGoogle Scholar
  44. Jollie MT (1977) A contribution to the morphology and phylogeny of the Falconiformes, parts 2–3. Evol Theory 2:115–300Google Scholar
  45. Jønsson KA, Fabre PH, Kennedy JD, Holt BG, Borregaard MK, Rahbek C, Fjeldså J (2016) A supermatrix phylogeny of corvoid passerine birds (Aves: Corvides). Mol Phylogenet Evol 94:87–94CrossRefPubMedGoogle Scholar
  46. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464CrossRefGoogle Scholar
  47. Kruckenhauser L, Haring E, Pinsker W, Riesing MJ, Winkler H, Wink M, Gamauf A (2004) Genetic vs. morphological differentiation of old world buzzards (genus Buteo, Accipitridae). Zool Scr 33:197–211CrossRefGoogle Scholar
  48. Lecompte E, Aplin K, Denys C, Catzeflis F, Chades M, Chevret P (2008) Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily. BMC Evol Biol 8:199CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lerner HR, Mindell DP (2005) Phylogeny of eagles, old world vultures, and other Accipitridae based on nuclear and mitochondrial DNA. Mol Phylogenet Evol 37(2):327–346CrossRefPubMedGoogle Scholar
  50. Lerner HR, Klaver MC, Mindell DP (2008) Molecular phylogenetics of the Buteonine birds of prey (Accipitridae). Auk 125(2):304–315CrossRefGoogle Scholar
  51. Lerner HR, Christidis L, Gamauf A, Griffiths C, Haring E, Huddleston CJ, Kabra S, Kocum A, Krosby M, Kvaløy K, Mindell DP, Rasmussen P, Røv N, Wadleigh R, Wink M, Gjershaug JO (2017) Supermatrix phylogeny and new taxonomy of the booted eagles (Accipitriformes: Aquilinae). Zootaxa 4216(4):301–320CrossRefGoogle Scholar
  52. Li S, Cadotte MW, Meiners SJ, Hua Z, Jiang L, Shu W (2015) Species colonization, not competitive exclusion, drives community overdispersion over long-term succession. Ecol Lett 18:964–973CrossRefPubMedGoogle Scholar
  53. Li Z, Clarke JA, Zhou Z, Deng T (2016) A new old world vulture from the late Miocene of China sheds light on Neogene shifts in the past diversity and distribution of the Gypaetinae. Auk 133:615–625CrossRefGoogle Scholar
  54. Mahmood MT, McLenachan PA, Gibb GC, Penny D (2014) Phylogenetic position of avian nocturnal and diurnal raptors. Genome Biol Evol 6(2):326–332CrossRefPubMedPubMedCentralGoogle Scholar
  55. Manegold A, Pavia M, Haarhoff P (2014) A new species of Aegypius Vulture (Aegypiinae, Accipitridae) from the early Pliocene of South Africa. J Vertebr Paleontol 34(6):1394–1407CrossRefGoogle Scholar
  56. Mazel F, Davies TJ, Gallien L, Renaud J, Groussin M, Münkemüller T, Thuiller W (2016) Influence of tree shape and evolutionary time-scale on phylogenetic diversity metrics. Ecography 39:913–920CrossRefPubMedGoogle Scholar
  57. McCormack JE, Harvey MG, Faircloth BC, Crawford NG, Glenn TC, Brumfield RT (2013) A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLoS One 8(1):e54848CrossRefPubMedPubMedCentralGoogle Scholar
  58. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proc Gateway Computing Environments workshop (GCE). New Orleans, 1–8Google Scholar
  59. Milne I, Lindner D, Bayer M, Husmeier D, McGuire G, Marshall DF, Wright F (2009) TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics 25:126–127CrossRefPubMedGoogle Scholar
  60. Oatley G, Simmons RE, Fuchs J (2015) A molecular phylogeny of the harriers (Circus, Accipitridae) indicate the role of long distance dispersal and migration in diversification. Mol Phylogenet Evol 85:150–160CrossRefPubMedGoogle Scholar
  61. Olson SL (2006) Reflections on the systematics of Accipiter and the genus for Falco superciliosus Linnaeus. Bull BOC 126:69–70Google Scholar
  62. Ong PS, Luczon AU, Quilang JP, Sumaya AMT, Ibanez JC, Salvador DJ, Fontanilla IKN (2011) DNA barcodes of Philippine accipitrids. Mol Ecol Resour 11:245–254CrossRefPubMedGoogle Scholar
  63. Osborne CP, Beerling DJ (2006) Nature’s green revolution: the remarkable evolutionary rise of C4 plants. Philos Trans R Soc B 361:173–194CrossRefGoogle Scholar
  64. Peters JL (1931) Check-list of the birds of the world, vol 1. Harvard Univ Press, CambridgeGoogle Scholar
  65. Philippe H, de Vienne DM, Ranwez V, Roure B, Baurain D, Delsuc F (2017) Pitfalls in supermatrix phylogenomics. European J Taxonomy 283:1–25Google Scholar
  66. Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–573CrossRefPubMedGoogle Scholar
  67. Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6, Available from. http://beast.bio.ed.ac.uk/Tracer
  68. R Development Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  69. Riesing MJ, Kruckenhauser L, Gamauf A, Haring E (2003) Molecular phylogeny of the genus Buteo (Aves: Accipitridae) based on mitochondrial marker sequences. Mol Phylogenet Evol 27(2):328–342CrossRefPubMedGoogle Scholar
  70. Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V et al (2008) The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322:225–230CrossRefPubMedGoogle Scholar
  71. Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds. Yale Univ Press, New Haven, A Study in Molecular EvolutionGoogle Scholar
  72. Swann HK (1922) A synopsis of the Accipitres (diurnal birds of prey): comprising species and subspecies described up to 1920, with their characters and distribution. Wheldon and Wesley, LondonGoogle Scholar
  73. Tucker CM, Cadotte MW, Carvalho SB, Davies TJ, Ferrier S, Fritz SA, Grenyer R, Helmus MR, Jin LS, Mooers AO, Pavoine S, Purschke O, Redding DW, Rosauer DF, Winter M, Mazel F (2016) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol Rev. https://doi.org/10.1111/brv.12252
  74. Voskamp A, Baker DJ, Stephens PA, Valdes PJ, Willis SG (2017) Global patterns in the divergence between phylogenetic diversity and species richness in terrestrial birds. J Biogeogr 44:709–721CrossRefGoogle Scholar
  75. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Evol Syst 33:475–505CrossRefGoogle Scholar
  76. Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100CrossRefPubMedGoogle Scholar
  77. Wink M, Sauer-Gürth H (2004) Phylogenetic relationships in diurnal raptors based on nucleotide sequences of mitochondrial and nuclear marker genes. In: Chancellor R, Meyburg B-U (eds) Raptors worldwide. World working group on birds of prey and owls, Berlin, pp 483–498Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • David P. Mindell
    • 1
  • Jérôme Fuchs
    • 2
  • Jeff A. Johnson
    • 3
  1. 1.Museum of Vertebrate Zoology, University of CaliforniaBerkeleyUSA
  2. 2.Institut Systématique Evolution Biodiversité (ISYEB)Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE 57 rue Cuvier, CP51ParisFrance
  3. 3.Department of Biological Sciences, Institute of Applied SciencesUniversity of North TexasDentonUSA

Personalised recommendations