Anticoagulation for Cardiac Prosthetic Devices: Prosthetic Heart Valves, Left Ventricular Assist Devices, and Septal Closure Devices

  • Matthew T. Crim
  • Supriya Shore
  • Suegene K. Lee
  • Bryan J. WellsEmail author


From the development of open heart surgery in the 1950s, dramatic technological advances have facilitated progressively complex cardiac procedures with approaches ranging from the open or minimally invasive surgical to the percutaneous endovascular. Treatments that involve securing prosthetic material in, or in communication with, the heart are employed in a variety of cardiac pathologies, including valvular heart disease, cardiomyopathy, and undesired communications between cardiac chambers. These devices carry with them the risk of thromboembolic complications that are mitigated by the use of antithrombotic therapies. In this chapter, we review the features of cardiac prosthetic devices associated with thrombosis, the indications for device use, their hematologic complications, and the evidence guiding current recommendations for management of these devices. Cardiac devices discussed include prosthetic heart valves (mechanical, bioprosthetic, and transcatheter aortic valves), valve repair (surgical, MitraClip, and endovascular plugs for prosthetic paravalvular leak), left ventricular assist devices (LVADs), temporary mechanical circulatory support, septal closure devices, and left atrial appendage (LAA) occlusion devices.


Blood coagulation Anticoagulants Platelet aggregation inhibitors Heart valve prosthesis Bioprosthesis Transcatheter aortic valve replacement Cardiac valve annuloplasty Left ventricular assist devices (LVADs) Temporary mechanical circulatory support Septal closure devices Left atrial appendage occlusion 


  1. 1.
    Cohn LH. Fifty years of open-heart surgery. Circulation. 2003;107(17):2168–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Atkinson TM, Ohman EM, O'Neill WW, Rab T, Cigarroa JE. A practical approach to mechanical circulatory support in patients undergoing percutaneous coronary intervention: an interventional perspective. JACC Cardiovasc Interv. 2016;9(9):871–83.PubMedCrossRefGoogle Scholar
  3. 3.
    van Hinsbergh VW. Endothelium--role in regulation of coagulation and inflammation. Semin Immunopathol. 2012;34(1):93–106.PubMedCrossRefGoogle Scholar
  4. 4.
    Chaikof EL. The development of prosthetic heart valves--lessons in form and function. TN Engl J Med. 2007;357(14):1368–71.CrossRefGoogle Scholar
  5. 5.
    Bourantas CV, Serruys PW. Evolution of transcatheter aortic valve replacement. Circ Res. 2014;114(6):1037–51.PubMedCrossRefGoogle Scholar
  6. 6.
    De Backer O, Piazza N, Banai S, Lutter G, Maisano F, Herrmann HC, et al. Percutaneous transcatheter mitral valve replacement: an overview of devices in preclinical and early clinical evaluation. Circ Cardiovasc Interv. 2014;7(3):400–9.PubMedCrossRefGoogle Scholar
  7. 7.
    ETH Zurich IoFD. Types of heart valves. Zurich, Switzerland.Google Scholar
  8. 8.
    Iung B, Vahanian A. Epidemiology of valvular heart disease in the adult. Nat Rev Cardiol. 2011;8(3):162–72.PubMedCrossRefGoogle Scholar
  9. 9.
    Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368(9540):1005–11.PubMedCrossRefGoogle Scholar
  10. 10.
    Marijon E, Ou P, Celermajer DS, Ferreira B, Mocumbi AO, Jani D, et al. Prevalence of rheumatic heart disease detected by echocardiographic screening. N Engl J Med. 2007;357(5):470–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Statistics NCfH. In: Services UDoHaH, editor. Health, United States, 2015: with special feature on racial and ethnics health disparities. Hyattsville: National Center for Health Statistics; 2016.Google Scholar
  12. 12.
    Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(22):e57–185.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Barón-Esquivias G, Baumgartner H, Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC); European Association for Cardio-Thoracic Surgery (EACTS), et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33(19):2451–96.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Fleisher LA, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation. 2017;135(25):e1159–95.PubMedCrossRefGoogle Scholar
  15. 15.
    Pibarot P, Dumesnil JG. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation. 2009;119(7):1034–48.PubMedCrossRefGoogle Scholar
  16. 16.
    Bluestein D, Rambod E, Gharib M. Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J Biomech Eng. 2000;122(2):125–34.PubMedCrossRefGoogle Scholar
  17. 17.
    Yang Y, Franzen SF, Olin CL. In vivo comparison of hemocompatibility of materials used in mechanical heart valves. J Heart Valve Dis. 1996;5(5):532–7.PubMedGoogle Scholar
  18. 18.
    Alemu Y, Girdhar G, Xenos M, Sheriff J, Jesty J, Einav S, et al. Design optimization of a mechanical heart valve for reducing valve thrombogenicity-A case study with ATS valve. ASAIO J. 2010;56(5):389–96.PubMedCrossRefGoogle Scholar
  19. 19.
    Cannegieter SC, Rosendaal FR, Briet E. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation. 1994;89:635–41.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Horstkotte D, Scharf RE, Schultheiss HP. Intracardiac thrombosis: patient-related and device-related factors. J Heart Valve Dis. 1995;4(2):114–20.PubMedGoogle Scholar
  21. 21.
    Butchart EG, Ionescu A, Payne N, Giddings J, Grunkemeier GL, Fraser AG. A new scoring system to determine thromboembolic risk after heart valve replacement. Circulation. 2003;108(Suppl 1):II68–74.PubMedGoogle Scholar
  22. 22.
    Whitlock RP, Sun JC, Fremes SE, Rubens FD, Teoh KH, American College of Chest P. Antithrombotic and thrombolytic therapy for valvular disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e576S–600S.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Schlitt A, von Bardeleben RS, Ehrlich A, Eimermacher A, Peetz D, Dahm M, et al. Clopidogrel and aspirin in the prevention of thromboembolic complications after mechanical aortic valve replacement (CAPTA). Thromb Res. 2003;109(2-3):131–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Dentali F, Pignatelli P, Malato A, Poli D, Di Minno MN, Di Gennaro L, et al. Incidence of thromboembolic complications in patients with atrial fibrillation or mechanical heart valves with a subtherapeutic international normalized ratio: a prospective multicenter cohort study. Am J Hematol. 2012;87(4):384–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Aziz F, Corder M, Wolffe J, Comerota AJ. Anticoagulation monitoring by an anticoagulation service is more cost-effective than routine physician care. J Vasc Surg. 2011;54(5):1404–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Lalonde L, Martineau J, Blais N, Montigny M, Ginsberg J, Fournier M, et al. Is long-term pharmacist-managed anticoagulation service efficient? A pragmatic randomized controlled trial. Am Heart J. 2008;156(1):148–54.PubMedCrossRefGoogle Scholar
  27. 27.
    Chiquette E, Amato MG, Bussey HI. Comparison of an anticoagulation clinic with usual medical care: anticoagulation control, patient outcomes, and health care costs. Arch Intern Med. 1998;158(15):1641–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Witt DM, Sadler MA, Shanahan RL, Mazzoli G, Tillman DJ. Effect of a centralized clinical pharmacy anticoagulation service on the outcomes of anticoagulation therapy. Chest. 2005;127(5):1515–22.PubMedCrossRefGoogle Scholar
  29. 29.
    Locke C, Ravnan SL, Patel R, Uchizono JA. Reduction in warfarin adverse events requiring patient hospitalization after implementation of a pharmacist-managed anticoagulation service. Pharmacotherapy. 2005;25(5):685–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Wittkowsky AK, Nutescu EA, Blackburn J, Mullins J, Hardman J, Mitchell J, et al. Outcomes of oral anticoagulant therapy managed by telephone vs in-office visits in an anticoagulation clinic setting. Chest. 2006;130(5):1385–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Koertke H, Zittermann A, Tenderich G, Wagner O, El-Arousy M, Krian A, et al. Low-dose oral anticoagulation in patients with mechanical heart valve prostheses: final report from the early self-management anticoagulation trial II. Eur Heart J. 2007;28(20):2479–84.PubMedCrossRefGoogle Scholar
  32. 32.
    Matchar DB, Love SR, Jacobson AK, Edson R, Uyeda L, Phibbs CS, et al. The impact of frequency of patient self-testing of prothrombin time on time in target range within VA Cooperative Study #481: The Home INR Study (THINRS), a randomized, controlled trial. J Thromb Thrombolysis. 2015;40(1):17–25.PubMedCrossRefGoogle Scholar
  33. 33.
    Heneghan C, Ward A, Perera R, Bankhead C, Fuller A, Stevens R, et al. Self-monitoring of oral anticoagulation: systematic review and meta-analysis of individual patient data. Lancet. 2012;379(9813):322–34.PubMedCrossRefGoogle Scholar
  34. 34.
    Mair H, Sachweh J, Sodian R, Brenner P, Schmoeckel M, Schmitz C, et al. Long-term self-management of anticoagulation therapy after mechanical heart valve replacement in outside trial conditions. Interact Cardiovasc Thorac Surg. 2012;14(3):253–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Thompson JL, Burkhart HM, Daly RC, Dearani JA, Joyce LD, Suri RM, et al. Anticoagulation early after mechanical valve replacement: improved management with patient self-testing. J Thorac Cardiovasc Surg. 2013;146(3):599–604.PubMedCrossRefGoogle Scholar
  36. 36.
    Koertke H, Zittermann A, Wagner O, Secer S, Sciangula A, Saggau W, et al. Telemedicine-guided, very low-dose international normalized ratio self-control in patients with mechanical heart valve implants. Eur Heart J. 2015;36(21):1297–305.PubMedCrossRefGoogle Scholar
  37. 37.
    Wypasek E, Ciesla M, Suder B, Janik L, Sadowski J, Undas A. CYP2C9 polymorphism and unstable anticoagulation with warfarin in patients within the first 3 months following heart valve replacement. Adv Clin Exp Med. 2015;24(4):607–14.PubMedCrossRefGoogle Scholar
  38. 38.
    Tatarunas V, Lesauskaite V, Veikutiene A, Grybauskas P, Jakuska P, Jankauskiene L, et al. The effect of CYP2C9, VKORC1 and CYP4F2 polymorphism and of clinical factors on warfarin dosage during initiation and long-term treatment after heart valve surgery. J Thromb Thrombolysis. 2014;37(2):177–85.PubMedCrossRefGoogle Scholar
  39. 39.
    Giansante C, Fiotti N, Altamura N, Pitacco P, Consoloni L, Scardi S, et al. Oral anticoagulation and VKORC1 polymorphism in patients with a mechanical heart prosthesis: a 6-year follow-up. J Thromb Thrombolysis. 2012;34(4):506–12.PubMedCrossRefGoogle Scholar
  40. 40.
    Cannegieter SC, Rosendaal FR, Wintzen AR, van der Meer FJ, Vandenbroucke JP, Briet E. Optimal oral anticoagulant therapy in patients with mechanical heart valves. N Engl J Med. 1995;333(1):11–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Acar J, Iung B, Boissel JP, Samama MM, Michel PL, Teppe JP, et al. AREVA: multicenter randomized comparison of low-dose versus standard-dose anticoagulation in patients with mechanical prosthetic heart valves. Circulation. 1996;94(9):2107–12.PubMedCrossRefGoogle Scholar
  42. 42.
    Pengo V, Barbero F, Banzato A, Garelli E, Noventa F, Biasiolo A, et al. A comparison of a moderate with moderate-high intensity oral anticoagulant treatment in patients with mechanical heart valve prostheses. Thromb Haemost. 1997;77(5):839–44.PubMedCrossRefGoogle Scholar
  43. 43.
    Hering D, Piper C, Bergemann R, Hillenbach C, Dahm M, Huth C, Horstkotte D. Thromboembolic and bleeding complications following St. Jude medical valve replacement. Chest. 2005;127:53–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Pruefer D, Dahm M, Dohmen G, Horstkotte D, Bergemann R, Oelert H. Intensity of oral anticoagulation after implantation of St. Jude medical mitral or multiple valve replacement: lessons learned from GELIA (GELIA 5). Eur Heart J Suppl. 2001;3(Suppl Q):Q39–43.CrossRefGoogle Scholar
  45. 45.
    Torella M, Torella D, Chiodini P, Franciulli M, Romano G, De Santo L, et al. LOWERing the INtensity of oral anticoaGulant Therapy in patients with bileaflet mechanical aortic valve replacement: results from the “LOWERING-IT” trial. Am Heart J. 2010;160(1):171–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Puskas J, Gerdisch M, Nichols D, Quinn R, Anderson C, Rhenman B, et al. Reduced anticoagulation after mechanical aortic valve replacement: interim results from the prospective randomized on-X valve anticoagulation clinical trial randomized Food and Drug Administration investigational device exemption trial. J Thorac Cardiovasc Surg. 2014;147(4):1202–10. discussion 10-1PubMedCrossRefGoogle Scholar
  47. 47.
    Xu Z, Wang ZP, Ou JS, Yin SL, Liu LJ, Zhang X. Is low anticoagulation intensity more beneficial for patients with bileaflet mechanical mitral valves? A meta-analysis. J Cardiovasc Surg. 2016;57(1):90–9.Google Scholar
  48. 48.
    Schomburg JL, Medina EM, Lahti MT, Bianco RW. Dabigatran versus warfarin after mechanical mitral valve replacement in the swine model. J Investig Surg. 2012;25(3):150–5.CrossRefGoogle Scholar
  49. 49.
    Van de Werf F, Brueckmann M, Connolly SJ, Friedman J, Granger CB, Hartter S, et al. A comparison of dabigatran etexilate with warfarin in patients with mechanical heart valves: THE Randomized, phase II study to evaluate the safety and pharmacokinetics of oral dabigatran etexilate in patients after heart valve replacement (RE-ALIGN). Am Heart J. 2012;163(6):931–7e1.PubMedCrossRefGoogle Scholar
  50. 50.
    Eikelboom JW, Connolly SJ, Brueckmann M, Granger CB, Kappetein AP, Mack MJ, et al. Dabigatran versus warfarin in patients with mechanical heart valves. N Engl J Med. 2013;369(13):1206–14.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Turpie AG, Gent M, Laupacis A, Latour Y, Gunstensen J, Basile F, et al. A comparison of aspirin with placebo in patients treated with warfarin after heart-valve replacement. N Engl J Med. 1993;329(8):524–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Meschengieser SS, Fondevila CG, Frontroth J, Santarelli MT, Lazzari MA. Low-intensity oral anticoagulation plus low-dose aspirin versus high-intensity oral anticoagulation alone: a randomized trial in patients with mechanical prosthetic heart valves. J Thorac Cardiovasc Surg. 1997;113:910–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Pengo V, Palareti G, Cucchini U, Molinatti M, Del Bono R, Baudo F, et al. Low-intensity oral anticoagulant plus low-dose aspirin during the first six months versus standard-intensity oral anticoagulant therapy after mechanical heart valve replacement: a pilot study of low-intensity warfarin and aspirin in cardiac prostheses (LIWACAP). Clin Appl Thromb Hemost. 2007;13(3):241–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Laffort P, Roudaut R, Roques X, Lafitte S, Deville C, Bonnet J, et al. Early and long-term (one-year) effects of the association of aspirin and oral anticoagulant on thrombi and morbidity after replacement of the mitral valve with the St. Jude medical prosthesis: a clinical and transesophageal echocardiographic study. J Am Coll Cardiol. 2000;35(3):739–46.PubMedCrossRefGoogle Scholar
  55. 55.
    Massel DL, Little SH. Risks and benefits of adding anti-platelet therapy to warfarin among patients with prosthetic heart valves: a meta-analysis. JACC. 2001;37(2):569–78.PubMedCrossRefGoogle Scholar
  56. 56.
    Massel DR, Little SH. Antiplatelet and anticoagulation for patients with prosthetic heart valves. Cochrane Database Syst Rev. 2013;7:CD003464.Google Scholar
  57. 57.
    Montalescot G, Polle V, Collet JP, Leprince P, Bellanger A, Gandjbakhch I, et al. Low molecular weight heparin after mechanical heart valve replacement. Circulation. 2000;101(10):1083–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Talwar S, Kapoor CK, Velayoudam D, Kumar AS. Anticoagulation protocol and early prosthetic valve thrombosis. Indian Heart J. 2004;56(3):225–8.PubMedGoogle Scholar
  59. 59.
    Fanikos J, Tsilimingras K, Kucher N, Rosen AB, Hieblinger MD, Goldhaber SZ. Comparison of efficacy, safety, and cost of low-molecular-weight heparin with continuous-infusion unfractionated heparin for initiation of anticoagulation after mechanical prosthetic valve implantation. Am J Cardiol. 2004;93:247–50.PubMedCrossRefGoogle Scholar
  60. 60.
    Kulik A, Rubens FD, Wells PS, Kearon C, Mesana TG, van Berkom J, et al. Early postoperative anticoagulation after mechanical valve replacement: a systematic review. Ann Thorac Surg. 2006;81(2):770–81.PubMedCrossRefGoogle Scholar
  61. 61.
    Kindo M, Gerelli S, Hoang Minh T, Zhang M, Meyer N, Announe T, et al. Exclusive low-molecular-weight heparin as bridging anticoagulant after mechanical valve replacement. Ann Thorac Surg. 2014;97(3):789–95.PubMedCrossRefGoogle Scholar
  62. 62.
    Passaglia LG, de Barros GM, de Sousa MR. Early postoperative bridging anticoagulation after mechanical heart valve replacement: a systematic review and meta-analysis. J Thromb Haemost. 2015;13(9):1557–67.PubMedCrossRefGoogle Scholar
  63. 63.
    Douketis JD, Spyropoulos AC, Spencer FA, Mayr M, Jaffer AK, Eckman MH, et al. Perioperative management of antithrombotic therapy: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e326S–50S.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Poldermans D, Bax JJ, Boersma E, Task Force for Preoperative Cardiac Risk A, Perioperative Cardiac Management in Non-cardiac S, European Society of C, et al. Guidelines for pre-operative cardiac risk assessment and perioperative cardiac management in non-cardiac surgery. Eur Heart J. 2009;30(22):2769–812.PubMedCrossRefGoogle Scholar
  65. 65.
    Tinker JH, Tarhan S. Discontinuing anticoagulant therapy in surgical patients with cardiac valve prostheses. Observations in 180 operations. JAMA. 1978;239(8):738–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Delate T, Meisinger SM, Witt DM, Jenkins D, Douketis JD, Clark NP. Bridge therapy outcomes in patients with mechanical heart valves. Clin Appl Thromb Hemost. 2016;23(8):1036–41.PubMedCrossRefGoogle Scholar
  67. 67.
    Pengo V, Cucchini U, Denas G, Erba N, Guazzaloca G, La Rosa L, et al. Standardized low-molecular-weight heparin bridging regimen in outpatients on oral anticoagulants undergoing invasive procedure or surgery: an inception cohort management study. Circulation. 2009;119(22):2920–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Bui HT, Krisnaswami A, Le CU, Chan J, Shenoy BN. Comparison of safety of subcutaneous enoxaparin as outpatient anticoagulation bridging therapy in patients with a mechanical heart valve versus patients with nonvalvular atrial fibrillation. Am J Cardiol. 2009;104(10):1429–33.PubMedCrossRefGoogle Scholar
  69. 69.
    Spyropoulos AC, Turpie AG, Dunn AS, Kaatz S, Douketis J, Jacobson A, et al. Perioperative bridging therapy with unfractionated heparin or low-molecular-weight heparin in patients with mechanical prosthetic heart valves on long-term oral anticoagulants (from the REGIMEN Registry). Am J Cardiol. 2008;102(7):883–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Siegal D, Yudin J, Kaatz S, Douketis JD, Lim W, Spyropoulos AC. Periprocedural heparin bridging in patients receiving vitamin K antagonists: systematic review and meta-analysis of bleeding and thromboembolic rates. Circulation. 2012;126(13):1630–9.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Steinberg BA, Peterson ED, Kim S, Thomas L, Gersh BJ, Fonarow GC, et al. Use and outcomes associated with bridging during anticoagulation interruptions in patients with atrial fibrillation: findings from the outcomes registry for better informed treatment of atrial fibrillation (ORBIT-AF). Circulation. 2015;131(5):488–94.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kovacs M. PERIOP 2 - a safety and effectiveness study of LMWH bridging therapy versus placebo bridging therapy for patients on long term warfarin and require temporary interruption of their warfarin (NCT00432796). 2007.
  73. 73.
    Pernod G, Godier A, Gozalo C, Tremey B, Sie P, French National Authority for H. French clinical practice guidelines on the management of patients on vitamin K antagonists in at-risk situations (overdose, risk of bleeding, and active bleeding). Thromb Res. 2010;126(3):e167–74.PubMedCrossRefGoogle Scholar
  74. 74.
    Weibert RT, Le DT, Kayser SR, Rapaport SI. Correction of excessive anticoagulation with low-dose oral vitamin K1. Ann Intern Med. 1997;126(12):959–62.PubMedCrossRefGoogle Scholar
  75. 75.
    Yiu KH, Siu CW, Jim MH, Tse HF, Fan K, Chau MC, et al. Comparison of the efficacy and safety profiles of intravenous vitamin K and fresh frozen plasma as treatment of warfarin-related over-anticoagulation in patients with mechanical heart valves. Am J Cardiol. 2006;97(3):409–11.PubMedCrossRefGoogle Scholar
  76. 76.
    Heras M, Chesebro JH, Fuster V, Penny WJ, Grill DE, Bailey KR, Danielson GK, Orszulak TA, Pluth JR, Puga FJ, Schaff HV, Larsonkeller JJ. High risk of thromboemboli early after bioprosthetic cardiac valve replacement. JACC. 1995;25(5):1111–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Nunez LGA, Larrea JL, Celemin D, Oliver J. Prevention of thromboembolism using aspirin after mitral valve replacement with porcine bioprosthesis. Ann Thorac Surg. 1984;37(1):84–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Orszulak TA, Schaff HV, Pluth JR, Danielson GK, Puga FJ, Ilstrup DM, et al. The risk of stroke in the early postoperative period following mitral valve replacement. Eur J Cardiothorac Surg. 1995;9(11):615–9. discuss 20PubMedCrossRefGoogle Scholar
  79. 79.
    Russo A, Grigioni F, Avierinos JF, Freeman WK, Suri R, Michelena H, et al. Thromboembolic complications after surgical correction of mitral regurgitation incidence, predictors, and clinical implications. J Am Coll Cardiol. 2008;51(12):1203–11.PubMedCrossRefGoogle Scholar
  80. 80.
    Turpie AG, Gunstensen J, Hirsh J, Nelson H, Gent M. Randomised comparison of two intensities of oral anticoagulant therapy after tissue heart valve replacement. Lancet. 1988;1(8597):1242–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Aramendi JI, Mestres CA, Martinez-Leon J, Campos V, Munoz G, Navas C. Triflusal versus oral anticoagulation for primary prevention of thromboembolism after bioprosthetic valve replacement (trac): prospective, randomized, co-operative trial. Eur J Cardiothorac Surg. 2005;27(5):854–60.PubMedCrossRefGoogle Scholar
  82. 82.
    Colli AMC, Castella M, et al. Comparing warfarin to aspirin (WoA) after aortic valve replacement with the St. Jude medical epic heart valve bioprosthesis: results of the WoA epic pilot trial. J Heart Valve Dis. 2007;16:667–71.PubMedGoogle Scholar
  83. 83.
    Blair KL, Hatton AC, White WD, Smith LR, Lowe JE, Wolfe WG, et al. Comparison of anticoagulation regimens after Carpentier-Edwards aortic or mitral valve replacement. Circulation. 1994;90(5 Pt 2):II214–9.PubMedGoogle Scholar
  84. 84.
    Orszulak TA, Schaff HV, Mullany CJ, Anderson BJ, Ilstrup DM, Puga FJ, et al. Risk of thromboembolism with the aortic Carpentier-Edwards bioprosthesis. Ann Thorac Surg. 1995;59(2):462–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Moinuddeen K, Quin J, Shaw R, Dewar M, Tellides G, Kopf G, et al. Anticoagulation is unnecessary after biological aortic valve replacement. Circulation. 1998;98(19 Suppl):II95–8. discussion II8-9PubMedGoogle Scholar
  86. 86.
    Gherli T. Comparing warfarin with aspirin after biological aortic valve replacement: a prospective study. Circulation. 2004;110(5):496–500.PubMedCrossRefGoogle Scholar
  87. 87.
    Al-Atassi T, Lam K, Forgie M, Boodhwani M, Rubens F, Hendry P, et al. Cerebral microembolization after bioprosthetic aortic valve replacement: comparison of warfarin plus aspirin versus aspirin only. Circulation. 2012;126(11 Suppl 1):S239–44.PubMedCrossRefGoogle Scholar
  88. 88.
    Colli A, Verhoye JP, Heijmen R, Antunes M. Low-dose acetyl salicylic acid versus oral anticoagulation after bioprosthetic aortic valve replacement. Final report of the ACTION registry. Int J Cardiol. 2013;168(2):1229–36.PubMedCrossRefGoogle Scholar
  89. 89.
    Mérie C, Køber L, Skov Olsen P, Andersson C, Gislason G, Skov Jensen J, Torp-Pedersen C. Association of warfarin therapy duration after bioprosthetic aortic valve replacement with risk of mortality, thromboembolic complications, and bleeding. JAMA. 2012;308(20):2118–25.PubMedCrossRefGoogle Scholar
  90. 90.
    Brennan JM, Edwards FH, Zhao Y, O'Brien S, Booth ME, Dokholyan RS, et al. Early anticoagulation of bioprosthetic aortic valves in older patients: results from the Society of Thoracic Surgeons Adult Cardiac Surgery National Database. J Am Coll Cardiol. 2012;60(11):971–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Yadlapati A, Groh C, Malaisrie SC, Gajjar M, Kruse J, Meyers S, et al. Efficacy and safety of novel oral anticoagulants in patients with bioprosthetic valves. Clin Res Cardiol. 2016;105(3):268–72.PubMedCrossRefGoogle Scholar
  92. 92.
    Duraes AR, de Souza RP, de Almeida NB, Albuquerque FP, de Bulhoes FV, de Souza Fernandes AM, et al. Dabigatran versus warfarin after bioprosthesis valve replacement for the management of atrial fibrillation postoperatively: DAWA Pilot Study. Drugs R D. 2016;16(2):149–54.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139–51.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883–91.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Giugliano RP, Ruff CT, Braunwald E, Murphy SA, Wiviott SD, Halperin JL, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369(22):2093–104.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Avezum A, Lopes RD, Schulte PJ, Lanas F, Gersh BJ, Hanna M, et al. Apixaban in comparison with warfarin in patients with atrial fibrillation and valvular heart disease: findings from the apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation (ARISTOTLE) trial. Circulation. 2015;132(8):624–32.PubMedCrossRefGoogle Scholar
  98. 98.
    Renda G, De Caterina R, Carnicelli A, Nordio F, Mercuri M, Ruff C, et al. Outcomes in 2824 patients with valvular heart disease treated with edoxaban or warfarin in the ENGAGE AF-TIMI 48 trial. J Am Coll Cardiol. 2016;67(13_S):2194.CrossRefGoogle Scholar
  99. 99.
    Carnicelli AP, De Caterina R, Halperin JL, Renda G, Ruff CT, Trevisan M, et al. Edoxaban for the prevention of thromboembolism in patients with atrial fibrillation and bioprosthetic valves. Circulation. 2017;135(13):1273–5.PubMedCrossRefGoogle Scholar
  100. 100.
    Lifesciences E. Device ring photo. Scientific American; 2012.Google Scholar
  101. 101.
    Aramendi JL, Agredo J, Llorente A, Larrarte C, Pijoan J. Prevention of thromboembolism with ticlopidine shortly after valve repair or replacement with a bioprosthesis. J Heart Valve Dis. 1998;7(6):610–4.PubMedGoogle Scholar
  102. 102.
    Hwang SK, Yoo JS, Kim JB, Jung SH, Choo SJ, Chung CH, et al. Long-term outcomes of the Maze procedure combined with mitral valve repair: risk of thromboembolism without anticoagulation therapy. Ann Thorac Surg. 2015;100(3):840–3. discussion 3–4PubMedCrossRefGoogle Scholar
  103. 103.
    Paparella D, Di Mauro M, Bitton Worms K, Bolotin G, Russo C, Trunfio S, et al. Antiplatelet versus oral anticoagulant therapy as antithrombotic prophylaxis after mitral valve repair. J Thorac Cardiovasc Surg. 2016;151(5):1302–8.e1.PubMedCrossRefGoogle Scholar
  104. 104.
    Valeur N, Merie C, Hansen ML, Torp-Pedersen C, Gislason GH, Kober L. Risk of death and stroke associated with anticoagulation therapy after mitral valve repair. Heart. 2016;102(9):687–93.PubMedCrossRefGoogle Scholar
  105. 105.
    Duran CM, Gometza B, Shahid M, Al-Halees Z. Treated bovine and autologous pericardium for aortic valve reconstruction. Ann Thorac Surg. 1998;66(6 Suppl):S166–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Luk A, Butany J, Ahn E, Fann JI, St Goar F, Thornton T, et al. Mitral repair with the Evalve MitraClip device: histopathologic findings in the porcine model. Cardiovasc Pathol. 2009;18(5):279–85.PubMedCrossRefGoogle Scholar
  107. 107.
    Feldman T, Wasserman HS, Herrmann HC, Gray W, Block PC, Whitlow P, et al. Percutaneous mitral valve repair using the edge-to-edge technique: six-month results of the EVEREST PHASE I Clinical Trial. J Am Coll Cardiol. 2005;46(11):2134–40.PubMedCrossRefGoogle Scholar
  108. 108.
    Mauri L, Garg P, Massaro JM, Foster E, Glower D, Mehoudar P, et al. The EVEREST II Trial: design and rationale for a randomized study of the evalve mitraclip system compared with mitral valve surgery for mitral regurgitation. Am Heart J. 2010;160(1):23–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Feldman T, Foster E, Glower DD, et al. Percutaneous repair or surgery for mitral regurgitation. N Engl J Med. 2011;364:1395–406.PubMedCrossRefGoogle Scholar
  110. 110.
    Cruz-Gonzalez I, Rama-Merchan JC, Rodriguez-Collado J, Martin-Moreiras J, Diego-Nieto A, Barreiro-Perez M, et al. Transcatheter closure of paravalvular leaks: state of the art. Neth Hear J. 2017;25(2):116–24.CrossRefGoogle Scholar
  111. 111.
    Rihal CS, Sorajja P, Booker JD, Hagler DJ, Cabalka AK. Principles of percutaneous paravalvular leak closure. JACC Cardiovasc Interv. 2012;5(2):121–30.PubMedCrossRefGoogle Scholar
  112. 112.
    Cruz-Gonzalez I, Rama-Merchan JC, Arribas-Jimenez A, Rodriguez-Collado J, Martin-Moreiras J, Cascon-Bueno M, et al. Paravalvular leak closure with the Amplatzer Vascular Plug III device: immediate and short-term results. Rev Esp Cardiol. 2014;67(8):608–14.PubMedCrossRefGoogle Scholar
  113. 113.
    Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363(17):1597–607.PubMedCrossRefGoogle Scholar
  114. 114.
    Ussia GP, Scarabelli M, Mule M, Barbanti M, Sarkar K, Cammalleri V, et al. Dual antiplatelet therapy versus aspirin alone in patients undergoing transcatheter aortic valve implantation. Am J Cardiol. 2011;108(12):1772–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Nijenhuis VJ, Bennaghmouch N, Hassell M, Baan J Jr, van Kuijk JP, Agostoni P, et al. Rationale and design of POPular-TAVI: antiplatelet therapy for patients undergoing transcatheter aortic valve implantation. Am Heart J. 2016;173:77–85.PubMedCrossRefGoogle Scholar
  116. 116.
    Dangas GD, Lefevre T, Kupatt C, Tchetche D, Schafer U, Dumonteil N, et al. Bivalirudin versus heparin anticoagulation in transcatheter aortic valve replacement: the randomized BRAVO-3 trial. J Am Coll Cardiol. 2015;66(25):2860–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Makkar RR, Fontana G, Jilaihawi H, Chakravarty T, Kofoed KF, de Backer O, et al. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N Engl J Med. 2015;373(21):2015–24.PubMedCrossRefGoogle Scholar
  118. 118.
    Latib A, Naganuma T, Abdel-Wahab M, Danenberg H, Cota L, Barbanti M, et al. Treatment and clinical outcomes of transcatheter heart valve thrombosis. Circ Cardiovasc Interv. 2015;8(4):e001779.PubMedCrossRefGoogle Scholar
  119. 119.
    Chakravarty T, Sondergaard L, Friedman J, De Backer O, Berman D, Kofoed KF, et al. Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study. Lancet. 2017;389(10087):2383–92.PubMedCrossRefGoogle Scholar
  120. 120.
    Nombela-Franco L, del Trigo M, Morrison-Polo G, Veiga G, Jimenez-Quevedo P, Abdul-Jawad Altisent O, et al. Incidence, causes, and predictors of early (</=30 days) and late unplanned hospital readmissions after transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2015;8(13):1748–57.PubMedCrossRefGoogle Scholar
  121. 121.
    Barbetseas J, Nagueh SF, Pitsavos C, Toutouzas PK, Quinones MA, Zoghbi WA. Differentiating thrombus from pannus formation in obstructed mechanical prosthetic valves: an evaluation of clinical, transthoracic and transesophageal echocardiographic parameters. J Am Coll Cardiol. 1998;32(5):1410–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Tong AT, Roudaut R, Ozkan M, Sagie A, Shahid MS, Pontes Junior SC, et al. Transesophageal echocardiography improves risk assessment of thrombolysis of prosthetic valve thrombosis: results of the international PRO-TEE registry. J Am Coll Cardiol. 2004;43(1):77–84.PubMedCrossRefGoogle Scholar
  123. 123.
    Symersky P, Budde RP, de Mol BA, Prokop M. Comparison of multidetector-row computed tomography to echocardiography and fluoroscopy for evaluation of patients with mechanical prosthetic valve obstruction. Am J Cardiol. 2009;104(8):1128–34.PubMedCrossRefGoogle Scholar
  124. 124.
    Zoghbi WA, Chambers JB, Dumesnil JG, Foster E, Gottdiener JS, Grayburn PA, et al. Recommendations for evaluation of prosthetic valves with echocardiography and doppler ultrasound: a report From the American Society of Echocardiography’s Guidelines and Standards Committee and the Task Force on Prosthetic Valves, developed in conjunction with the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography, endorsed by the American College of Cardiology Foundation, American Heart Association, European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography, and Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2009;22(9):975–1014. quiz 82-4PubMedCrossRefGoogle Scholar
  125. 125.
    Bates SM, Greer IA, Middeldorp S, Veenstra DL, Prabulos AM, Vandvik PO. VTE, thrombophilia, antithrombotic therapy, and pregnancy: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e691S–736S.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Regitz-Zagrosek V, Blomstrom Lundqvist C, Borghi C, European Society of G, Association for European Paediatric C, German Society for Gender M, et al. ESC guidelines on the management of cardiovascular diseases during pregnancy: the Task Force on the Management of Cardiovascular Diseases during Pregnancy of the European Society of Cardiology (ESC). Eur Heart J. 2011;32(24):3147–97.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    van Hagen IM, Roos-Hesselink JW, Ruys TP, Merz WM, Goland S, Gabriel H, et al. Pregnancy in women with a mechanical heart valve: data of the European Society of Cardiology Registry of Pregnancy and Cardiac Disease (ROPAC). Circulation. 2015;132(2):132–42.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Lawley CM, Lain SJ, Algert CS, Ford JB, Figtree GA, Roberts CL. Prosthetic heart valves in pregnancy: a systematic review and meta-analysis protocol. Syst Rev. 2014;3:8.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Hassouna A, Allam H. Limited dose warfarin throughout pregnancy in patients with mechanical heart valve prosthesis: a meta-analysis. Interact Cardiovasc Thorac Surg. 2014;18(6):797–806.PubMedCrossRefGoogle Scholar
  130. 130.
    DeBakey ME. Left ventricular bypass pump for cardiac assistance. Clinical experience. Am J Cardiol. 1971;27(1):3–11.PubMedCrossRefGoogle Scholar
  131. 131.
    Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.PubMedCrossRefGoogle Scholar
  132. 132.
    Montori VM, Permanyer-Miralda G, Ferreira-Gonzalez I, Busse JW, Pacheco-Huergo V, Bryant D, et al. Validity of composite end points in clinical trials. BMJ. 2005;330(7491):594–6.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Evans RW, Manninen DL, Garrison LP Jr, Maier AM. Donor availability as the primary determinant of the future of heart transplantation. JAMA. 1986;255(14):1892–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Chen J, Normand SL, Wang Y, Krumholz HM. National and regional trends in heart failure hospitalization and mortality rates for Medicare beneficiaries, 1998-2008. JAMA. 2011;306(15):1669–78.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Suarez J, Patel CB, Felker GM, Becker R, Hernandez AF, Rogers JG. Mechanisms of bleeding and approach to patients with axial-flow left ventricular assist devices. Circ Heart Fail. 2011;4(6):779–84.PubMedCrossRefGoogle Scholar
  136. 136.
    Griffith BP, Kormos RL, Borovetz HS, Litwak K, Antaki JF, Poirier VL, et al. HeartMate II left ventricular assist system: from concept to first clinical use. Ann Thorac Surg. 2001;71(3 Suppl):S116–20. discussion S4-6PubMedCrossRefGoogle Scholar
  137. 137.
    Bourque K, Gernes DB, Loree HM, Richardson JS, Poirier VL, Barletta N, et al. HeartMate III: pump design for a centrifugal LVAD with a magnetically levitated rotor. ASAIO J. 2001;47(4):401–5.PubMedCrossRefGoogle Scholar
  138. 138.
    Abraham WT, Smith SA. Devices in the management of advanced, chronic heart failure. Nat Rev Cardiol. 2013;10(2):98–110.PubMedCrossRefGoogle Scholar
  139. 139.
    Mehra MR, Naka Y, Uriel N, Goldstein DJ, Cleveland JC Jr, Colombo PC, et al. A fully magnetically levitated circulatory pump for advanced heart failure. N Engl J Med. 2017;376(5):440–50.PubMedCrossRefGoogle Scholar
  140. 140.
    Birschmann I, Dittrich M, Eller T, Wiegmann B, Reininger AJ, Budde U, et al. Ambient hemolysis and activation of coagulation is different between HeartMate II and HeartWare left ventricular assist devices. J Heart Lung Transplant. 2014;33(1):80–7.PubMedCrossRefGoogle Scholar
  141. 141.
    Himmelreich G, Ullmann H, Riess H, Rosch R, Loebe M, Schiessler A, et al. Pathophysiologic role of contact activation in bleeding followed by thromboembolic complications after implantation of a ventricular assist device. ASAIO J. 1995;41(3):M790–4.PubMedCrossRefGoogle Scholar
  142. 142.
    Slaughter MS, Sobieski MA, Gallagher C, Graham J, Brandise J, Stein R. Fibrinolytic activation during long-term support with the HeartMate II left ventricular assist device. ASAIO J. 2008;54(1):115–9.PubMedCrossRefGoogle Scholar
  143. 143.
    John R, Panch S, Hrabe J, Wei P, Solovey A, Joyce L, et al. Activation of endothelial and coagulation systems in left ventricular assist device recipients. Ann Thorac Surg. 2009;88(4):1171–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Matsubayashi H, Fastenau DR, McIntyre JA. Changes in platelet activation associated with left ventricular assist system placement. J Heart Lung Transplant. 2000;19(5):462–8.PubMedCrossRefGoogle Scholar
  145. 145.
    Jafri SM, Ozawa T, Mammen E, Levine TB, Johnson C, Goldstein S. Platelet function, thrombin and fibrinolytic activity in patients with heart failure. Eur Heart J. 1993;14(2):205–12.PubMedCrossRefGoogle Scholar
  146. 146.
    Klovaite J, Gustafsson F, Mortensen SA, Sander K, Nielsen LB. Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (HeartMate II). J Am Coll Cardiol. 2009;53(23):2162–7.PubMedCrossRefGoogle Scholar
  147. 147.
    Meyer AL, Malehsa D, Budde U, Bara C, Haverich A, Strueber M. Acquired von Willebrand syndrome in patients with a centrifugal or axial continuous flow left ventricular assist device. JACC Heart Fail. 2014;2(2):141–5.PubMedCrossRefGoogle Scholar
  148. 148.
    Tsai HM, Sussman II, Nagel RL. Shear stress enhances the proteolysis of von Willebrand factor in normal plasma. Blood. 1994;83(8):2171–9.PubMedGoogle Scholar
  149. 149.
    Uriel N, Pak SW, Jorde UP, Jude B, Susen S, Vincentelli A, et al. Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J Am Coll Cardiol. 2010;56(15):1207–13.PubMedCrossRefGoogle Scholar
  150. 150.
    Crow S, Chen D, Milano C, Thomas W, Joyce L, Piacentino V 3rd, et al. Acquired von Willebrand syndrome in continuous-flow ventricular assist device recipients. Ann Thorac Surg. 2010;90(4):1263–9. discussion 9PubMedCrossRefGoogle Scholar
  151. 151.
    Bourque K, Cotter C, Dague C, Harjes D, Dur O, Duhamel J, et al. Design rationale and preclinical evaluation of the HeartMate 3 left ventricular assist system for hemocompatibility. ASAIO J. 2016;62(4):375–83.PubMedCrossRefGoogle Scholar
  152. 152.
    Pagani FD, Miller LW, Russell SD, Aaronson KD, John R, Boyle AJ, et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54(4):312–21.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Baumann Kreuziger LM, Kim B, Wieselthaler GM. Antithrombotic therapy for left ventricular assist devices in adults: a systematic review. J Thromb Haemost. 2015;13(6):946–55.PubMedCrossRefGoogle Scholar
  154. 154.
    Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157–87.PubMedCrossRefGoogle Scholar
  155. 155.
    Gurbel PA, Tantry US. Antiplatelet and anticoagulant agents in heart failure: current status and future perspectives. JACC Heart Fail. 2014;2(1):1–14.CrossRefPubMedGoogle Scholar
  156. 156.
    Slaughter MS, Naka Y, John R, Boyle A, Conte JV, Russell SD, et al. Post-operative heparin may not be required for transitioning patients with a HeartMate II left ventricular assist system to long-term warfarin therapy. J Heart Lung Transplant. 2010;29(6):616–24.PubMedCrossRefGoogle Scholar
  157. 157.
    Nassif ME, LaRue SJ, Raymer DS, Novak E, Vader JM, Ewald GA, et al. Relationship between anticoagulation intensity and thrombotic or bleeding outcomes among outpatients with continuous-flow left ventricular assist devices. Circ Heart Fail. 2016;9(5):e002680.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Jennings D, McDonnell J, Schillig J. Assessment of long-term anticoagulation in patients with a continuous-flow left-ventricular assist device: a pilot study. J Thorac Cardiovasc Surg. 2011;142(1):e1–2.CrossRefPubMedGoogle Scholar
  159. 159.
    Bishop MA, Streiff MB, Ensor CR, Tedford RJ, Russell SD, Ross PA. Pharmacist-managed international normalized ratio patient self-testing is associated with increased time in therapeutic range in patients with left ventricular assist devices at an academic medical center. ASAIO J. 2014;60(2):193–8.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Jennings DL, Brewer R, Williams C. Impact of continuous flow left ventricular assist device on the pharmacodynamic response to warfarin early after implantation. Ann Pharmacother. 2012;46(9):1266–7.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Terrovitis JV, Ntalianis A, Kapelios CJ, Vakrou S, Diakos N, Katsaros L, et al. Dabigatran etexilate as second-line therapy in patients with a left ventricular assist device. Hell J Cardiol. 2015;56(1):20–5.Google Scholar
  162. 162.
    Crow S, John R, Boyle A, Shumway S, Liao K, Colvin-Adams M, et al. Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. The J Thorac Cardiovasc Surg. 2009;137(1):208–15.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Genovese EA, Dew MA, Teuteberg JJ, Simon MA, Kay J, Siegenthaler MP, et al. Incidence and patterns of adverse event onset during the first 60 days after ventricular assist device implantation. Ann Thorac Surg. 2009;88(4):1162–70.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Boyle AJ, Jorde UP, Sun B, Park SJ, Milano CA, Frazier OH, et al. Pre-operative risk factors of bleeding and stroke during left ventricular assist device support: an analysis of more than 900 HeartMate II outpatients. J Am Coll Cardiol. 2014;63(9):880–8.PubMedCrossRefGoogle Scholar
  165. 165.
    Letsou GV, Shah N, Gregoric ID, Myers TJ, Delgado R, Frazier OH. Gastrointestinal bleeding from arteriovenous malformations in patients supported by the Jarvik 2000 axial-flow left ventricular assist device. J Heart Lung Transplant. 2005;24(1):105–9.PubMedCrossRefGoogle Scholar
  166. 166.
    Pal JD, Piacentino V, Cuevas AD, Depp T, Daneshmand MA, Hernandez AF, et al. Impact of left ventricular assist device bridging on posttransplant outcomes. Ann Thorac Surg. 2009;88(5):1457–61. discussion 61PubMedCrossRefGoogle Scholar
  167. 167.
    Singh G, Albeldawi M, Kalra SS, Mehta PP, Lopez R, Vargo JJ. Features of patients with gastrointestinal bleeding after implantation of ventricular assist devices. Clin Gastroenterol Hepatol. 2015;13(1):107–14.e1.PubMedCrossRefGoogle Scholar
  168. 168.
    Shrode CW, Draper KV, Huang RJ, Kennedy JL, Godsey AC, Morrison CC, et al. Significantly higher rates of gastrointestinal bleeding and thromboembolic events with left ventricular assist devices. Clin Gastroenterol Hepatol. 2014;12(9):1461–7.PubMedCrossRefGoogle Scholar
  169. 169.
    Draper KV, Huang RJ, Gerson LB. GI bleeding in patients with continuous-flow left ventricular assist devices: a systematic review and meta-analysis. Gastrointest Endosc. 2014;80(3):435–46.e1.PubMedCrossRefGoogle Scholar
  170. 170.
    Wilson TJ, Stetler WR Jr, Al-Holou WN, Sullivan SE, Fletcher JJ. Management of intracranial hemorrhage in patients with left ventricular assist devices. J Neurosurg. 2013;118(5):1063–8.PubMedCrossRefGoogle Scholar
  171. 171.
    Bunte MC, Blackstone EH, Thuita L, Fowler J, Joseph L, Ozaki A, et al. Major bleeding during HeartMate II support. J Am Coll Cardiol. 2013;62(23):2188–96.PubMedCrossRefGoogle Scholar
  172. 172.
    Starling RC, Moazami N, Silvestry SC, Ewald G, Rogers JG, Milano CA, et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med. 2014;370(1):33–40.PubMedCrossRefGoogle Scholar
  173. 173.
    Kirklin JK, Naftel DC, Kormos RL, Pagani FD, Myers SL, Stevenson LW, et al. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) analysis of pump thrombosis in the HeartMate II left ventricular assist device. J Heart Lung Transplant. 2014;33(1):12–22.PubMedCrossRefGoogle Scholar
  174. 174.
    Morgan JA, Brewer RJ, Nemeh HW, Gerlach B, Lanfear DE, Williams CT, et al. Stroke while on long-term left ventricular assist device support: incidence, outcome, and predictors. ASAIO J. 2014;60(3):284–9.PubMedCrossRefGoogle Scholar
  175. 175.
    Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43.PubMedCrossRefGoogle Scholar
  176. 176.
    Eckman PM, John R. Bleeding and thrombosis in patients with continuous-flow ventricular assist devices. Circulation. 2012;125(24):3038–47.PubMedCrossRefGoogle Scholar
  177. 177.
    Hasin T, Deo S, Maleszewski JJ, Topilsky Y, Edwards BS, Pereira NL, et al. The role of medical management for acute intravascular hemolysis in patients supported on axial flow LVAD. ASAIO J. 2014;60(1):9–14.PubMedCrossRefGoogle Scholar
  178. 178.
    Gilotra NA, Stevens GR. Temporary mechanical circulatory support: a review of the options, indications, and outcomes. Clin Med Insights Cardiol. 2014;8(Suppl 1):75–85.PubMedGoogle Scholar
  179. 179.
    Ihdayhid AR, Chopra S, Rankin J. Intra-aortic balloon pump: indications, efficacy, guidelines and future directions. Curr Opin Cardiol. 2014;29(4):285–92.PubMedCrossRefGoogle Scholar
  180. 180.
    Kogan A, Preisman S, Sternik L, Orlov B, Spiegelstein D, Hod H, et al. Heparin-free management of intra-aortic balloon pump after cardiac surgery. J Card Surg. 2012;27(4):434–7.PubMedCrossRefGoogle Scholar
  181. 181.
    Pucher PH, Cummings IG, Shipolini AR, McCormack DJ. Is heparin needed for patients with an intra-aortic balloon pump? Interact Cardiovasc Thorac Surg. 2012;15(1):136–9.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Sieg A, Mardis BA, Mardis CR, Huber MR, New JP, Meadows HB, et al. Developing an Anti-Xa-based anticoagulation protocol for patients with percutaneous ventricular assist devices. ASAIO J. 2015;61(5):502–8.PubMedCrossRefGoogle Scholar
  183. 183.
    Raiten JM, Wong ZZ, Spelde A, Littlejohn JE, Augoustides JG, Gutsche JT. Anticoagulation and transfusion therapy in patients requiring extracorporeal membrane oxygenation. J Cardiothorac Vasc Anesth. 2017;31(3):1051–9.PubMedCrossRefGoogle Scholar
  184. 184.
    Lock JERJ, Davis R, et al. Transcatheter closure of atrial septal defects: experimental studies. Circulation. 1989;79:1091–9.PubMedCrossRefGoogle Scholar
  185. 185.
    Sharafuddin MJA, Gu X, Titus JL, Urness M, Cervera-Ceballos JJ, Amplatz K. Transvenous closure of secundum atrial septal defects : preliminary results with a new self-expanding nitinol prosthesis in a swine model. Circulation. 1997;95(8):2162–8.PubMedCrossRefGoogle Scholar
  186. 186.
    Chessa M, Carminati M, Butera G, Bini RM, Drago M, Rosti L, et al. Early and late complications associated with transcatheter occlusion of secundum atrial septal defect. J Am Coll Cardiol. 2002;39(6):1061–5.PubMedCrossRefGoogle Scholar
  187. 187.
    Anzai H, Child J, Natterson B, Krivokapich J, Fishbein MC, Chan VK, et al. Incidence of thrombus formation on the CardioSEAL and the Amplatzer interatrial closure devices. Am J Cardiol. 2004;93(4):426–31.PubMedCrossRefGoogle Scholar
  188. 188.
    Krumsdorf U, Ostermayer S, Billinger K, Trepels T, Zadan E, Horvath K, et al. Incidence and clinical course of thrombus formation on atrial septal defect and patient foramen ovale closure devices in 1,000 consecutive patients. J Am Coll Cardiol. 2004;43(2):302–9.PubMedCrossRefGoogle Scholar
  189. 189.
    Masura J, Gavora P, Podnar T. Long-term outcome of transcatheter secundum-type atrial septal defect closure using Amplatzer septal occluders. J Am Coll Cardiol. 2005;45(4):505–7.PubMedCrossRefGoogle Scholar
  190. 190.
    YC F, Bass J, Amin Z, Radtke W, Cheatham JP, Hellenbrand WE, et al. Transcatheter closure of perimembranous ventricular septal defects using the new Amplatzer membranous VSD occluder: results of the U.S. phase I trial. J Am Coll Cardiol. 2006;47(2):319–25.CrossRefGoogle Scholar
  191. 191.
    Butera G, Carminati M, Chessa M, Piazza L, Micheletti A, Negura DG, et al. Transcatheter closure of perimembranous ventricular septal defects: early and long-term results. J Am Coll Cardiol. 2007;50(12):1189–95.PubMedCrossRefGoogle Scholar
  192. 192.
    Jones TK, Latson LA, Zahn E, Fleishman CE, Jacobson J, Vincent R, et al. Results of the U.S. multicenter pivotal study of the HELEX septal occluder for percutaneous closure of secundum atrial septal defects. J Am Coll Cardiol. 2007;49(22):2215–21.PubMedCrossRefGoogle Scholar
  193. 193.
    Freixa X, Ibrahim R, Chan J, et al. Initial clinical experience with the GORE septal occluder for the treatment of atrial septal defects and patent foramen ovale. EuroIntervention. 2013;9(5):629–35.PubMedCrossRefGoogle Scholar
  194. 194.
    Nyboe C, Hjortdal VE, Nielsen-Kudsk JE. First experience with the GORE (®) Septal Occluder in children and adults with atrial septal defects. Catheter Cardiovasc Interv. 2013;82(6):929–34.PubMedCrossRefGoogle Scholar
  195. 195.
    Blackshear JLOJ. Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation. Ann Thorac Surg. 1996;61(2):755–9.PubMedCrossRefGoogle Scholar
  196. 196.
    Holmes DRRV, Turi ZG, et al. Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomised non-inferiority trial. Lancet. 2009;374:534–42.PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Reddy VY, Mobius-Winkler S, Miller MA, Neuzil P, Schuler G, Wiebe J, et al. Left atrial appendage closure with the Watchman device in patients with a contraindication for oral anticoagulation: the ASAP study (ASA Plavix Feasibility Study With Watchman Left Atrial Appendage Closure Technology). J Am Coll Cardiol. 2013;61(25):2551–6.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Sahay S, Nombela-Franco L, Rodes-Cabau J, Jimenez-Quevedo P, Salinas P, Biagioni C, et al. Efficacy and safety of left atrial appendage closure versus medical treatment in atrial fibrillation: a network meta-analysis from randomised trials. Heart. 2016;103(2):139–47. Scholar
  199. 199.
    Rodriguez-Gabella T, Nombela-Franco L, Regueiro A, Jimenez-Quevedo P, Champagne J, O'Hara G, et al. Single antiplatelet therapy following left atrial appendage closure in patients with contraindication to anticoagulation. J Am Coll Cardiol. 2016;68(17):1920–1.PubMedCrossRefGoogle Scholar
  200. 200.
    Bartus K, Han FT, Bednarek J, Myc J, Kapelak B, Sadowski J, et al. Percutaneous left atrial appendage suture ligation using the LARIAT device in patients with atrial fibrillation: initial clinical experience. J Am Coll Cardiol. 2013;62(2):108–18.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Gianni C, Di Biase L, Trivedi C, Mohanty S, Gokoglan Y, Gunes MF, et al. Clinical implications of leaks following left atrial appendage ligation with the LARIAT device. JACC Cardiovasc Interv. 2016;9(10):1051–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Matthew T. Crim
    • 1
  • Supriya Shore
    • 1
  • Suegene K. Lee
    • 1
  • Bryan J. Wells
    • 1
    Email author
  1. 1.Department of Medicine, Division of CardiologyEmory University School of MedicineAtlantaUSA

Personalised recommendations