Advertisement

Using Function Points in Agile Projects: A Comparative Analysis Between Existing Approaches

  • Eduardo Garcia WanderleyEmail author
  • Alexandre Vasconcelos
  • Bruno Tenório Avila
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 802)

Abstract

Agile Software Development has become increasingly common in the software development environment, but effort estimates in software projects using Agile methodologies are made differently from those made in traditional way projects. This paper presents a comparative analysis of the different approaches of applying Function Point Analysis (FPA) in software projects that make use of some existing agile methodologies. Through an experimental, empirical and controlled research, the existing proposals in the literature in order to test your application and analyze its results were evaluated. The results showed that in the context studied, the approach Agile Estimation Using Functional Metrics was best suited up.

Keywords

Effort estimation Cost estimation Size estimation Agile  Scrum 

References

  1. 1.
    Sommerville, I.: Engenharia de Software. Editora Addison-Wesley (2011)Google Scholar
  2. 2.
    dos Santos Soares, M.: Comparação entre Metodologias Ágeis e Tradicionais para o Desenvolvimento de Software. Unipac-Universidade Presidente Antônio Carlos (2010)Google Scholar
  3. 3.
    Mens, T., Demeyer, S.: Future trends in software evolution metrics. In: Proceedings of the 4th International Workshop on Principles of Software Evolution, IWPSE 2001, pp. 83–86 (2001)Google Scholar
  4. 4.
    França, L.P.A., et al.: Medição de Software para Pequenas Empresas: uma Solução Baseada na Web. PUC-RJ, Rio de Janeiro (1998)Google Scholar
  5. 5.
    Usman, M., et al.: Effort estimation in agile software development: A systematic literature review. In: Proceedings of the 10th International Conference on Predictive Models in Software Engineering, pp. 82–91. ACM (2014)Google Scholar
  6. 6.
    Kan, S.: Metrics and Models in Software Quality Engineering. Addison-Wesley, Boston (2002)zbMATHGoogle Scholar
  7. 7.
    Albrecht, A.J.: Measuring application development productivity. In: Proceedings of the IBM Applications Development Symposium, p. 83. GUIDE, IBM Corp., Monterey (1979)Google Scholar
  8. 8.
    SO/IEC 20926: Disponível em (2002). www.iso.org/iso/cataloguedetail.htm
  9. 9.
    Dekkers, C.: Measuring the logical or function a Size of Software Projects and Software Application. Spotlight Software, ISO Bulletin, May 2003Google Scholar
  10. 10.
    Perry, W.E.: The best measures for measuring data processing quality and productivity. Quality Assurance Institute Technical Report (1986)Google Scholar
  11. 11.
    Jones, C.: Function points. Computer 27(8), 66–67 (1994)Google Scholar
  12. 12.
    Santana, C., Gusmão, C.: Uso de Análise de Pontos de Funções em Ambientes Ágeis. In: Engenharia de Software Magazine, pp. 33–40, 20 December 2009Google Scholar
  13. 13.
    Oest, C.: Quando a Análise de Pontos de Função se Torna um Método Ágil? In: 2nd Conferência Brasileira de Medição e Analise de Software, São Paulo, Brasil 2011Google Scholar
  14. 14.
    BFPUG: Brazilian Function Point Users Group, Número de CFPS por País (2008)Google Scholar
  15. 15.
    SISP: Roteiro de Métricas de Software do SISP: V. 2.0. Ministério do Planejamento, Orçamento e Gestão: Secretaria de Logistica e Tecnologia da Informação, Brasília (2012)Google Scholar
  16. 16.
  17. 17.
    Usman, M., et al.: Effort estimation in Agile Software Development: A systematic literature review. In: Proceedings of the 10th International Conference on Predictive Models in Software Engineering, pp. 82–91. ACM (2014)Google Scholar
  18. 18.
    Cohn, M.: Agile Estimation and Planning. Addison-Wesley, Upper Saddle River (2005)Google Scholar
  19. 19.
    Schmietendorf, A., et al.: Effort estimation for agile software development projects. In: 5th Software Measurement European Forum (2008)Google Scholar
  20. 20.
    Fuqua, A.M.: Using function points in XP - considerations. In: Marchesi, M., Succi, G. (eds.) XP 2003. LNCS, vol. 2675, pp. 340–342. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-44870-5_46CrossRefGoogle Scholar
  21. 21.
    Banerjee, A.U., et al.: Estimating agile iterations by extending function point analysis. In: WORLDCOMP 2012 (2012)Google Scholar
  22. 22.
    Alexander, A.J.: Case Study: Function Point Analysis and Cost Estimation in An Agile Development Environment (2011)Google Scholar
  23. 23.
    Cagley, T.: Agile Estimation Using Functional Metrics. The IFPUG Guide to IT and Software Measurement IFPUG. CRC Press (2009)Google Scholar
  24. 24.
    Wanderley, E.G.: Aplicação de Pontos por Função em Projetos que Usam Métodos. Dissertação de Mestrado UFPE (2015)Google Scholar
  25. 25.
    Kitchenham, B., et al.: Towards a framework for software measurement validation. IEEE Trans. Softw. Eng. 21(12), 929–943 (1995)CrossRefGoogle Scholar
  26. 26.
    Sousa, K., De, D., et al.: Uso do GQM para avaliar implantação de processo de manutenção de software. Universidade Católica de Brasília (2005)Google Scholar
  27. 27.
    Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-1-4757-3304-4CrossRefzbMATHGoogle Scholar
  28. 28.
    Travassos, G.H., et al.: Introdução à Engenharia de Software Experimental (2002)Google Scholar
  29. 29.
    Fisher, R.A.: Statistical Methods for Research Workers. Oliver & Boyd, Edinburgh (1925)zbMATHGoogle Scholar
  30. 30.
    Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Eduardo Garcia Wanderley
    • 1
    Email author
  • Alexandre Vasconcelos
    • 2
  • Bruno Tenório Avila
    • 2
  1. 1.IFPE – Instituto Federal de Educação, Ciência e TecnologiaGaranhhunsBrazil
  2. 2.UFPE – Universidade Federal de PernambucoRecifeBrazil

Personalised recommendations