Opinion Mining and Sentiment Analysis

  • Charu C. Aggarwal
Chapter

Abstract

The recent proliferation of social media has enabled users to post views about entities, individuals, events, and topics in a variety of formal and informal settings. Examples of such settings include reviews, forums, social media posts, blogs, and discussion boards. The problem of opinion mining and sentiment analysis is defined as the computational analytics associated with such text.

Bibliography

  1. [1]
    C. Aggarwal. Data classification: Algorithms and applications, CRC Press, 2014.Google Scholar
  2. [2]
    C. Aggarwal. Data mining: The textbook. Springer, 2015.Google Scholar
  3. [3]
    C. Aggarwal. Recommender systems: The textbook. Springer, 2016.Google Scholar
  4. [14]
    C. Aggarwal, and C. Zhai, Mining text data. Springer, 2012.Google Scholar
  5. [20]
    A. Andreevskaia and S. Bergler. Mining WordNet for a Fuzzy Sentiment: Sentiment Tag Extraction from WordNet Glosses. European Chapter of the Association for Computational Linguistics, pp. 209–216, 2006.Google Scholar
  6. [30]
    S. Baccianella, A. Esuli, and F. Sebastiani. SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. LREC, pp. 2200–2204, 2010.Google Scholar
  7. [46]
    F. Benevenuto, G. Magno, T. Rodrigues, and V. Almeida. Detecting spammers on twitter. Collaboration, Electronic Messaging, Anti-abuse and Spam Conference, 2010.Google Scholar
  8. [59]
    E. Breck, Y. Choi, and C. Cardie. Identifying expressions of opinion in ontext. IJCAI, pp. 2683–2688, 2007.Google Scholar
  9. [97]
    Y. Choi, C. Cardie, E. Riloff, and S. Patwardhan. Identifying sources of opinions with conditional random fields and extraction patterns. Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 355–362, 2005.Google Scholar
  10. [114]
    B. O’Connor, R. Balasubramanyan, B. Routledge, and N. Smith. From tweets to polls: Linking text sentiment to public opinion time series. ICWSM, pp. 122–129, 2010.Google Scholar
  11. [127]
    S. Das and M. Chen. Yahoo! for Amazon: Extracting market sentiment from stock message boards. Asia Pacific Finance Association Annual Conference (APFA), 2001.Google Scholar
  12. [139]
    X. Ding, B. Liu, and P. S. Yu. A holistic lexicon-based approach to opinion mining. WSDM Conference, pp. 231–240, 2008.Google Scholar
  13. [156]
    A. Esuli, and F. Sebastiani. Determining the semantic orientation of terms through gloss classification. ACM CIKM Conference, pp. 617–624, 2005.Google Scholar
  14. [157]
    A. Esuli and F. Sebastiani. Determining term subjectivity and term orientation for opinion mining. European Chapter of the Association of Computational Linguistics, 2006.Google Scholar
  15. [158]
    O. Etzioni, M. Cafarella, D. Downey, A. Popescu, T. Shaked, S. Soderland, D. Weld, and A. Yates. Unsupervised named-entity extraction from the web: An experimental study. Artificial Intelligence, 165(1), pp. 91–134, 2005.CrossRefGoogle Scholar
  16. [159]
    O. Etzioni, M. Banko, S. Soderland, and D. Weld. Open information extraction from the web. Communications of the ACM, 51(12), pp. 68–74, 2008.CrossRefGoogle Scholar
  17. [195]
    A. Graves. Supervised sequence labelling with recurrent neural networks Springer, 2012. http://rd.springer.com/book/10.1007%2F978-3-642-24797-2 CrossRefMATHGoogle Scholar
  18. [199]
    B. Hagedorn, M. Ciaramita, and J. Atserias. World knowledge in broad-coverage information filtering. ACM SIGIR Conference, 2007.Google Scholar
  19. [211]
    M. Hatzivassiloglou, and K. McKeown. Predicting the semantic orientation of adjectives. European Chapter of the Association for Computational Linguistics, pp. 174–181, 1997.Google Scholar
  20. [212]
    V. Hatzivassiloglou and J. Wiebe. Effects of adjective orientation and gradability on sentence subjectivity. Conference on Computational Linguistics, pp. 299–305, 2000.Google Scholar
  21. [229]
    M. Hu and B. Liu. Mining opinion features in customer reviews. AAAI, pp. 755–760, 2004.Google Scholar
  22. [230]
    M. Hu and B. Liu. Mining and summarizing customer reviews. ACM KDD Conference, pp. 168–177, 2004.Google Scholar
  23. [233]
    N. Jakob and I. Gurevych. Extracting opinion targets in a single-and cross-domain setting with conditional random fields. Conference on Empirical Methods in Natural Language Processing, pp. 1035–1045, 2010.Google Scholar
  24. [234]
    W. Jin, H. Ho, and R. Srihari. OpinionMiner: a novel machine learning system for Web opinion mining and extraction. ACM KDD Conference, pp. 1195–1204, 2009.Google Scholar
  25. [235]
    N. Jindal and B. Liu. Opinion spam and analysis. WSDM Conference, pp. 219–230, 2008.Google Scholar
  26. [249]
    D. Jurafsky and J. Martin. Speech and language processing. Prentice Hall, 2008.Google Scholar
  27. [252]
    J. Kamps, M. Marx, R. Mokken, and M. Rijke. Using wordnet to measure semantic orientations of adjectives. LREC, pp. 1115–1118, 2004.Google Scholar
  28. [254]
    H. Kanayama and T. Nasukawa. Fully automatic lexicon expansion for domain-oriented sentiment analysis. Conference on Empirical Methods in Natural Language Processing, pp. 355–363, 2006.Google Scholar
  29. [259]
    H. Kim, K. Ganesan, P. Sondhi, and C. Zhai. Comprehensive Review of Opinion Summarization. Technical Report, University of Illinois at Urbana-Champaign, 2011. https://www.ideals.illinois.edu/handle/2142/18702
  30. [260]
    S. Kim and E. Hovy. Automatic identification of pro and con reasons in online reviews. COLING/ACL Conference, pp. 483–490, 2006.Google Scholar
  31. [270]
    J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. ICML Conference, pp. 282–289, 2001.Google Scholar
  32. [275]
    Q. Le and T. Mikolov. Distributed representations of sentences and documents. ICML Conference, pp. 1188–196, 2014.Google Scholar
  33. [288]
    F. Li, C. Han, M. Huang, X. Zhu, Y. Xia, S. Zhang, and H. Yu. Structure-aware review mining and summarization. Conference on Computational Linguistics, pp. 6563–661, 2010.Google Scholar
  34. [293]
    E. Lim, V. Nguyen, N. Jindal, B. Liu, and H. Lauw. Detecting product review spammers using rating behaviors. ACM CIKM Conference, pp. 939–948, 2010.Google Scholar
  35. [302]
    C. Lin and Y. He. Joint sentiment/topic model for sentiment analysis. ACM CIKM Conference, pp. 375–384, 2009.Google Scholar
  36. [303]
    B. Liu. Web data mining: exploring hyperlinks, contents, and usage data. Springer, New York, 2007.Google Scholar
  37. [304]
    B. Liu. Sentiment Analysis and Subjectivity. Handbook of Natural Language Processing, 2, pp. 627–666, 2010.Google Scholar
  38. [305]
    B. Liu. Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge University Press, 2015.Google Scholar
  39. [310]
    Y. Lu, M. Castellanos, U. Dayal, and C. Zhai. Automatic construction of a context-aware sentiment lexicon: an optimization approach. World Wide Web Conference, pp. 347–356, 2011.Google Scholar
  40. [311]
    Y. Lu and C. Zhai. Opinion integration through semi-supervised topic modeling. World Wide Web Conference, pp. 121–130, 2008.Google Scholar
  41. [315]
    A. Maas, R. Daly, P. Pham, D. Huang, A. Ng, and C. Potts. Learning word vectors for sentiment analysis. Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pp. 142–150, 2011.Google Scholar
  42. [322]
    C. Manning and H. Schütze. Foundations of statistical natural language processing. MIT Press, 1999.Google Scholar
  43. [329]
    R. McDonald, K. Hannan, T. Neylon, M. Wells, and J. Reynar. Structured models for fine-to-coarse sentiment analysis. ACL Conference, 2007.Google Scholar
  44. [333]
    Q. Mei, X. Ling, M. Wondra, H. Su, and C. Zhai. Topic sentiment mixture: modeling facets and opinions in weblogs. In World Wide Web Conference, pp. 171–180, 2007.Google Scholar
  45. [335]
    P. Melville, W. Gryc, and R. Lawrence. Sentiment analysis of blogs by combining lexical knowledge with text classification. ACM KDD Conference, pp. 1275–1284, 2009.Google Scholar
  46. [356]
    T. Mullen and N. Collier. Sentiment analysis using support vector machines with diverse information sources. Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 412–418, 2004.Google Scholar
  47. [357]
    J.-C. Na, H. Sui, C. Khoo, S. Chan, and Y. Zhou. Effectiveness of simple linguistic processing in automatic sentiment classification of product reviews. Conference of the International Society for Knowledge Organization (ISKO), pp. 49–54, 2004.Google Scholar
  48. [369]
    M. Ott, Y. Choi, C. Cardie, and J. Hancock. Finding deceptive opinion spam by any stretch of the imagination. Association for Computational Linguistics: Human Language Technologies-Volume 1, pp. 309–319, 2011.Google Scholar
  49. [372]
    A. Pak and P. Paroubek. Twitter as a Corpus for Sentiment Analysis and Opinion Mining. LREC, pp. 1320–1326, 2010.Google Scholar
  50. [373]
    B. Pang and L. Lee. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. ACL Conference, 2004.Google Scholar
  51. [374]
    B. Pang and L. Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. ACL Conference, pp. 115–124, 2005.Google Scholar
  52. [375]
    B. Pang and L. Lee. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), pp. 1–135, 2008.CrossRefGoogle Scholar
  53. [376]
    B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques. Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 79–86, 2002.Google Scholar
  54. [384]
    L. Polanyi and A. Zaenen. Contextual valence shifters. Computing Attitude and Affect in Text: Theory and Applications, pp. 1–10, Springer, 2006.Google Scholar
  55. [387]
    A. Popescu and O. Etzioni. Extracting product features and opinions from reviews. Natural Language Processing and Text Mining, pp. 9–28, 2007.Google Scholar
  56. [394]
    G. Qiu, B. Liu, J. Bu, and C. Chen. Opinion word expansion and target extraction through double propagation. Computational linguistics, 37(1), pp. 9–27, 2011.CrossRefGoogle Scholar
  57. [467]
    M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede. Lexicon-based methods for sentiment analysis. Computational Linguistics, 37(2), pp. 267–307, 2011.CrossRefGoogle Scholar
  58. [470]
    J. Tang, Y. Chang, C. Aggarwal, and H. Liu. A survey of signed network mining in social media. ACM Computing Surveys (CSUR), 49(3), 42, 2016.Google Scholar
  59. [471]
    J. Tang, S. Chang, C. Aggarwal, and H. Liu. (2015, February). Negative link prediction in social media. WSDM Conference, pp. 87–96, 2015.Google Scholar
  60. [477]
    P. Turney. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. ACL Conference, pp. 417–424, 2002.Google Scholar
  61. [478]
    P. Turney and M. Littman. Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems, 21(4), pp. 314–346, 2003.CrossRefGoogle Scholar
  62. [499]
    J. Wiebe, R. Bruce, and T. O’Hara. Development and use of a gold-standard data set for subjectivity classifications. Association for Computational Linguistics on Computational Linguistics, pp. 246–253, 1999.Google Scholar
  63. [500]
    J. Wiebe and E. Riloff. Creating subjective and objective sentence classifiers from unannotated texts. International Conference on Intelligent Text Processing and Computational Linguistics, pp. 486–497, 2005.Google Scholar
  64. [503]
    T. Wilson, J. Wiebe, and P. Hoffmann. Recognizing contextual polarity in phrase-level sentiment analysis. Human Language Technology and Empirical Methods in Natural Language Processing, pp. 347–354, 2005.Google Scholar
  65. [504]
    T. Wilson, J. Wiebe, and R. Hwa. Just how mad are you? Finding strong and weak opinion clauses. Computational Intelligence, 22(2), pp. 73–99, 2006.MathSciNetCrossRefGoogle Scholar
  66. [509]
    Z. Wu, C. Aggarwal, and J. Sun. The troll-trust model for ranking in signed networks. WSDM Conference, pp. 447–456, 2016.Google Scholar
  67. [541]
    L. Zhuang, F. Jing, and X. Zhu. Movie review mining and summarization. ACM CIKM Conference, pp. 43–50, 2006.Google Scholar
  68. [554]
  69. [556]
  70. [598]
  71. [612]
  72. [616]

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Charu C. Aggarwal
    • 1
  1. 1.IBM T. J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations