Vasopressors in Sepsis

Chapter

Abstract

Septic shock is the most serious form of sepsis and requires rapid recognition and treatment. Early hemodynamic support of patients in septic shock is crucial to prevent worsening organ dysfunction and failure. If hypotension is severe or if it persists despite initial fluid administration, the use of vasopressors is indicated. Profound hypotension worsens organ hypoperfusion in septic shock, and it represents an independent risk of death; it should thus be corrected as soon as possible. Vasopressor agents are used to counteract the sepsis-induced decrease in vascular tone with the aim of restoring tissue perfusion pressure. In this context achieving a mean systemic arterial pressure of 65–70 mmHg is a good initial goal, while different target levels should be considered taking into account individual variabilities. Each vasopressor has specific hemodynamic, metabolic, and immunomodulating effects. Adrenergic agonists are the first-line vasopressors, norepinephrine being the first-choice agent. In cases of “refractory” septic shock, adding another vasopressor with a different mechanism of action (non-adrenergic) could be considered. Vasopressin has ben shown to be a valuable alternative agent, while promizing data have been reported with the use of angiotensin.

Keywords

Septic shock Sepsis Vasopressors Adrenergic agents Non-adrenergic agents Norepinephrine Epinephrine Vasopressin Angiotensin 

References

  1. 1.
    Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–10.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cecconi M, De Backer D, Antonelli M, Beale RJ, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the Third International Consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):775–87.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369(18):1726–34.CrossRefPubMedGoogle Scholar
  5. 5.
    De BD, Scolletta S. Clinical management of the cardiovascular failure in sepsis. Curr Vasc Pharmacol. 2013;11(2):222–42.Google Scholar
  6. 6.
    Bucher M, Kees F, Taeger K, Kurtz A. Cytokines down-regulate alpha1-adrenergic receptor expression during endotoxemia. Crit Care Med. 2003;31(2):566–71.CrossRefPubMedGoogle Scholar
  7. 7.
    Bucher M, Hobbhahn J, Kurtz A. Nitric oxide-dependent down-regulation of angiotensin II type 2 receptors during experimental sepsis. Crit Care Med. 2001;29(9):1750–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Bucher M, Hobbhahn J, Taeger K, Kurtz A. Cytokine-mediated downregulation of vasopressin V(1A) receptors during acute endotoxemia in rats. Am J Physiol Regul Integr Comp Physiol. 2002;282(4):R979–84.CrossRefPubMedGoogle Scholar
  9. 9.
    Annane D, Bellissant E, Sebille V, Lesieur O, Mathieu B, Raphael JC, et al. Impaired pressor sensitivity to noradrenaline in septic shock patients with and without impaired adrenal function reserve. Br J Clin Pharmacol. 1998;46:589–97.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Correa TD, Vuda M, Takala J, Djafarzadeh S, Silva E, Jakob SM. Increasing mean arterial blood pressure in sepsis: effects on fluid balance, vasopressor load and renal function. Crit Care. 2013;17(1):R21.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Albanese J, Leone M, Garnier F, Bourgoin A, Antonini F, Martin C. Renal effects of norepinephrine in septic and nonseptic patients. Chest. 2004;126(2):534–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Dunser MW, Takala J, Ulmer H, Mayr VD, Luckner G, Jochberger S, et al. Arterial blood pressure during early sepsis and outcome. Intensive Care Med. 2009;35(7):1225–33.CrossRefPubMedGoogle Scholar
  13. 13.
    Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettila V. Hemodynamic variables related to outcome in septic shock. Intensive Care Med. 2005;31(8):1066–71.CrossRefGoogle Scholar
  14. 14.
    Marchick MR, Kline JA, Jones AE. The significance of non-sustained hypotension in emergency department patients with sepsis. Intensive Care Med. 2009;35(7):1261–4.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Magder SA. The highs and lows of blood pressure: toward meaningful clinical targets in patients with shock. Crit Care Med. 2014;42(5):1241–51.CrossRefGoogle Scholar
  16. 16.
    Schlichtig R, Kramer DJ, Pinsky MR. Flow redistribution during progressive hemorrhage is a determinent of critical O2 delivery. J Appl Physiol. 1991;70:169–78.CrossRefGoogle Scholar
  17. 17.
    De Backer D, Creteur J, Noordally O, Smail N, Gulbis B, Vincent JL. Does hepato-splanchnic VO2/DO2 dependency exist in critically ill septic patients? Am J Respir Crit Care Med. 1998;157:1219–25.CrossRefGoogle Scholar
  18. 18.
    Izawa J, Kitamura T, Iwami T, Uchino S, Takinami M, Kellum JA, et al. Early-phase cumulative hypotension duration and severe-stage progression in oliguric acute kidney injury with and without sepsis: an observational study. Crit Care. 2016;20(1):405.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Taccone FS, Castanares-Zapatero D, Peres-Bota D, Vincent JL, Berre' J, Melot C. Cerebral autoregulation is influenced by carbon dioxide levels in patients with septic shock. Neurocrit Care. 2010;12(1):35–42.CrossRefGoogle Scholar
  20. 20.
    Berre J, De Backer D, Moraine JJ, Melot C, Kahn RJ, Vincent JL. Dobutamine increases cerebral blood flow velocity and jugular bulb hemoglobin saturation. Crit Care Med. 1997;25:392–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Sharshar T, Gray F, Lorin dG, Hopkinson NS, Ross E, Dorandeu A, et al. Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet. 2003;362(9398):1799–805.CrossRefPubMedGoogle Scholar
  22. 22.
    De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–04.Google Scholar
  23. 23.
    De Backer D, Donadello K, Sakr Y, Ospina-Tascon GA, Salgado DR, Scolletta S, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med 2013;41(3):791–9.Google Scholar
  24. 24.
    Monnet X, Jabot J, Maizel J, Richard C, Teboul JL. Norepinephrine increases cardiac preload and reduces preload dependency assessed by passive leg raising in septic shock patients. Crit Care Med. 2011;39(4):689–94.CrossRefPubMedGoogle Scholar
  25. 25.
    Georger JF, Hamzaoui O, Chaari A, Maizel J, Richard C, Teboul JL. Restoring arterial pressure with norepinephrine improves muscle tissue oxygenation assessed by near-infrared spectroscopy in severely hypotensive septic patients. Intensive Care Med. 2010;36:1882–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Bai X, Yu W, Ji W, Lin Z, Tan S, Duan K, et al. Early versus delayed administration of norepinephrine in patients with septic shock. Crit Care. 2014;18(5):532.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med, 2017;43(3):304–77.Google Scholar
  28. 28.
    Thooft A, Favory R, Salgado DR, Taccone FS, Donadello K, De Backer D, et al. Effects of changes in arterial pressure on organ perfusion during septic shock. Crit Care. 2011;15:R222.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Deruddre S, Cheisson G, Mazoit JX, Vicaut E, Benhamou D, Duranteau J. Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med. 2007;33(9):1557–62.CrossRefPubMedGoogle Scholar
  30. 30.
    Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370(17):1583–93.CrossRefPubMedGoogle Scholar
  31. 31.
    De Backer D, Creteur J, Silva E, Vincent JL. Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock: which is best? Crit Care Med. 2003;31:1659–67.CrossRefPubMedGoogle Scholar
  32. 32.
    Myburgh JA, Higgins A, Jovanovska A, Lipman J, Ramakrishnan N, Santamaria J. A comparison of epinephrine and norepinephrine in critically ill patients. Intensive Care Med. 2008;34(12):2226–34.CrossRefPubMedGoogle Scholar
  33. 33.
    Annane D, Vignon P, Renault A, Bollaert PE, Charpentier C, Martin C, et al. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial. Lancet. 2007;370(9588):676–84.CrossRefPubMedGoogle Scholar
  34. 34.
    De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779–89.CrossRefPubMedGoogle Scholar
  35. 35.
    De Backer D, Aldecoa C, Njimi H, Vincent J-L. Dopamine versus norepinephrine in the treatment of septic shock: a metaanalysis. Crit Care Med. 2012;40:725–30.CrossRefPubMedGoogle Scholar
  36. 36.
    Russell JA, Walley KR, Singer J, Gordon AC, Hebert PC, Cooper DJ, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358(9):877–87.CrossRefPubMedGoogle Scholar
  37. 37.
    Gordon AC, Mason AJ, Thirunavukkarasu N, Perkins GD, Cecconi M, Cepkova M, et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the VANISH randomized clinical trial. JAMA. 2016;316(5):509–18.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Khanna A, English SW, Wang XS, Ham K, Tumlin J, Szerlip H, et al. Angiotensin II for the treatment of vasodilatory shock. N Engl J Med. 2017;377(5):419–30.CrossRefGoogle Scholar
  39. 39.
    Lopez A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, et al. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med. 2004;32:21–30.CrossRefGoogle Scholar
  40. 40.
    Myburgh JA, Webb RK, Worthley LIG. The P50 is reduced in critically ill patients. Intensive Care Med. 1991;17:355–8.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Surgical Intensive Care Unit, Calderon Guardia HospitalUniversidad de Costa RicaSan JoséCosta Rica
  2. 2.Department of Intensive Care, CHIREC HospitalsUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations