Management of Multiorgan Failure in Sepsis

  • Ithan D. Peltan
  • Samuel M. BrownEmail author


A complex interaction between host and pathogen determines whether patients with infection will develop sepsis, which is defined by the development of multiorgan failure. Patients’ clinical organ failure phenotype and molecular endotype predict outcome differences. While interventions targeting molecular pathways thought to lead from infection to multiorgan failure have so far proven unsuccessful, strategies focusing on support of specific organs may aid recovery from sepsis-associated multiorgan failure.


Multiorgan failure Sepsis Septic shock Acute respiratory distress syndrome Acute renal failure 


  1. 1.
    Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Baue AE. Multiple, progressive, or sequential systems failure: a syndrome of the 1970s. Arch Surg. 1975;110:779–81.PubMedCrossRefGoogle Scholar
  3. 3.
    Shoemaker WC. Editorial: multiple injuries and multiple organ failure. Crit Care Med. 1973;1:157.PubMedCrossRefGoogle Scholar
  4. 4.
    Eiseman B, Beart R, Norton L. Multiple organ failure. Surg Gynecol Obstet. 1977;144:323–6.PubMedGoogle Scholar
  5. 5.
    Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992;101:1644–55.PubMedCrossRefGoogle Scholar
  6. 6.
    Marshall JC, Cook DJ, Christou NV, Bernard GR, Sprung CL, Sibbald WJ. Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med. 1995;23:1638–52.PubMedCrossRefGoogle Scholar
  7. 7.
    Seymour CW, Coopersmith CM, Deutschman CS, et al. Application of a framework to assess the usefulness of alternative sepsis criteria. Crit Care Med. 2016;44:e122–30.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Baue AE. MOF, MODS, and SIRS: what is in a name or an acronym? Shock. 2006;26:438–49.PubMedCrossRefGoogle Scholar
  9. 9.
    Vincent J-L, Moreno R. Clinical review: scoring systems in the critically ill. Crit Care. 2010;14:207.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hébert PC, Drummond AJ, Singer J, Bernard GR, Russell JA. A simple multiple system organ failure scoring system predicts mortality of patients who have sepsis syndrome. Chest. 1993;104:230–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:762–74.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Le Gall JR, Klar J, Lemeshow S, et al. The logistic organ dysfunction system: a new way to assess organ dysfunction in the intensive care unit. JAMA. 1996;276(10):802–10.PubMedCrossRefGoogle Scholar
  13. 13.
    Vincent J-L, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22:707–10.PubMedCrossRefGoogle Scholar
  14. 14.
    Peres Bota D, Melot C, Lopes Ferreira F, Nguyen B-V, Vincent J-L. The Multiple Organ Dysfunction Score (MODS) versus the Sequential Organ Failure Assessment (SOFA) score in outcome prediction. Intensive Care Med. 2002;28:1619–24.PubMedCrossRefGoogle Scholar
  15. 15.
    Goris RJ, te Boekhorst TP, Nuytinck JK, Gimbrère JS. Multiple-organ failure: generalized autodestructive inflammation? Arch Surg. 1985;120:1109–15.PubMedCrossRefGoogle Scholar
  16. 16.
    Fry DE, Pearlstein L, Fulton RL, Polk HC. Multiple system organ failure: the role of uncontrolled infection. Arch Surg. 1980;115:136–40.PubMedCrossRefGoogle Scholar
  17. 17.
    Stevens LE. Gauging the severity of surgical sepsis. Arch Surg. 1983;118:1190–2.PubMedCrossRefGoogle Scholar
  18. 18.
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE. Prognosis in acute organ-system failure. Ann Surg. 1985;202:685–93.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV. Multiple-organ-failure syndrome. Arch Surg. 1986;121:196–208.PubMedCrossRefGoogle Scholar
  20. 20.
    Marshall JC, Christou NV, Horn R, Meakins JL. The microbiology of multiple organ failure. The proximal gastrointestinal tract as an occult reservoir of pathogens. Arch Surg. 1988;123:309–15.PubMedCrossRefGoogle Scholar
  21. 21.
    Kollef MH. Ventilator-associated pneumonia: a multivariate analysis. JAMA. 1993;270:1965–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Fagon JY, Chastre J, Novara A, Medioni P, Gibert C. Characterization of intensive care unit patients using a model based on the presence or absence of organ dysfunctions and/or infection: the ODIN model. Intensive Care Med. 1993;19:137–44.PubMedCrossRefGoogle Scholar
  23. 23.
    Moore FA, Sauaia A, Moore EE, Haenel JB, Burch JM, Lezotte DC. Postinjury multiple organ failure: a bimodal phenomenon. J Trauma. 1996;40:501–10. discussion 510–2.CrossRefGoogle Scholar
  24. 24.
    Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med. 2003;31:1250–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Howell MD, Talmor D, Schuetz P, Hunziker S, Jones AE, Shapiro NI. Proof of principle: the predisposition, infection, response, organ failure sepsis staging system. Crit Care Med. 2011;39:322–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Freund Y, Lemachatti N, Krastinova E, et al. Prognostic accuracy of Sepsis-3 criteria for in-hospital mortality among patients with suspected infection presenting to the emergency department. JAMA. 2017;317:301–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Raith EP, Udy AA, Bailey M, et al. Prognostic accuracy of the SOFA score, SIRS criteria, and qSOFA score for in-hospital mortality among adults with suspected infection admitted to the intensive care unit. JAMA. 2017;317:290–300.PubMedCrossRefGoogle Scholar
  28. 28.
    Sauaia A, Moore EE, Johnson JL, Ciesla DJ, Biffl WL, Banerjee A. Validation of post-injury multiple organ failure scores. Shock. 2009;31:438–47.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Alberti C, Brun-Buisson C, Chevret S, et al. Systemic inflammatory response and progression to severe sepsis in critically ill infected patients. Am J Respir Crit Care Med. 2005;171:461–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Sørensen TI, Nielsen GG, Andersen PK, Teasdale TW. Genetic and environmental influences on premature death in adult adoptees. N Engl J Med. 1988;318:727–32.PubMedCrossRefGoogle Scholar
  31. 31.
    Petersen L, Andersen PK, Sørensen TIA. Genetic influences on incidence and case-fatality of infectious disease. PLoS One. 2010;5:e10603.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Albright FS, Orlando P, Pavia AT, Jackson GG, Cannon Albright LA. Evidence for a heritable predisposition to death due to influenza. J Infect Dis. 2008;197:18–24.PubMedCrossRefGoogle Scholar
  33. 33.
    Clark MF, Baudouin SVA. Systematic review of the quality of genetic association studies in human sepsis. Intensive Care Med. 2006;32:1706–12.PubMedCrossRefGoogle Scholar
  34. 34.
    Sutherland AM, Walley KR. Bench-to-bedside review: association of genetic variation with sepsis. Crit Care. 2009;13:210.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Blanco J, Muriel-Bombín A, Sagredo V, et al. Incidence, organ dysfunction and mortality in severe sepsis: a Spanish multicentre study. Crit Care. 2008;12:R158.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Tilney NL, Bailey GL, Morgan AP. Sequential system failure after rupture of abdominal aortic aneurysms: an unsolved problem in postoperative care. Ann Surg. 1973;178:117–22.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Vincent J-L, Nelson DR, Williams MDI. Worsening multiple organ failure the cause of death in patients with severe sepsis? Crit Care Med. 2011;39:1050–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Graetz TJ, Hotchkiss RS. Sepsis: preventing organ failure in sepsis–the search continues. Nat Rev Nephrol. 2017;13:5–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Prescott HC, Calfee CS, Thompson BT, Angus DC, Liu VX. Toward smarter lumping and smarter splitting: rethinking strategies for sepsis and acute respiratory distress syndrome clinical trial design. Am J Respir Crit Care Med. 2016;194:147–55.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Knox DB, Lanspa MJ, Kuttler KG, Brewer SC, Brown SM. Phenotypic clusters within sepsis-associated multiple organ dysfunction syndrome. Intensive Care Med. 2015;41:814–22.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Davenport EE, Burnham KL, Radhakrishnan J, et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir Med. 2016;4:259–71.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Seely AJ, Christou NV. Multiple organ dysfunction syndrome: exploring the paradigm of complex nonlinear systems. Crit Care Med. 2000;28:2193–200.PubMedCrossRefGoogle Scholar
  43. 43.
    Vincent J-L. We should abandon randomized controlled trials in the intensive care unit. Crit Care Med. 2010;38:S534–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Carlet J, Cohen J, Calandra T, Opal SM, Masur H. Sepsis: time to reconsider the concept. Crit Care Med. 2008;36:964–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Investigators PRISM, Rowan KM, Angus DC, et al. Early, goal-directed therapy for septic shock—a patient-level meta-analysis. N Engl J Med. 2017;376:2223–34.CrossRefGoogle Scholar
  46. 46.
    Kalil AC, Johnson DW, Lisco SJ, Sun J. Early goal-directed therapy for sepsis: a novel solution for discordant survival outcomes in clinical trials. Crit Care Med. 2017;45:607–14.PubMedCrossRefGoogle Scholar
  47. 47.
    Seymour CW, Gesten F, Prescott HC, et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med. 2017;376:2235–44.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Whiles BB, Deis AS, Simpson SQ. Increased time to initial antimicrobial administration is associated with progression to septic shock in severe sepsis patients. Crit Care Med. 2017;45:623–9.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Leisman D, Huang V, Zhou Q, et al. Delayed second dose antibiotics for patients admitted from the emergency department with sepsis: prevalence, risk factors, and outcomes. Crit Care Med. 2017;45:956–65.PubMedCrossRefGoogle Scholar
  50. 50.
    Mandell LA, Wunderink RG, Anzueto A, et al. Infectious diseases society of America/American thoracic society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;44(suppl 2):S27–72.PubMedCrossRefGoogle Scholar
  51. 51.
    Strehlow MC, Emond SD, Shapiro NI, Pelletier AJ, Camargo CA. National study of emergency department visits for sepsis, 1992 to 2001. Ann Emerg Med. 2006;48:326–31.PubMedCrossRefGoogle Scholar
  52. 52.
    Kahn SR, Lim W, Dunn AS, et al. Prevention of VTE in nonsurgical patients: antithrombotic therapy and prevention of thrombosis, 9th ed: American college of chest physicians evidence-based clinical practice guidelines. Chest. 2012;141:e195S–226S.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Pronovost P, Needham D, Berenholtz S, et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med. 2006;355:2725–32.PubMedCrossRefGoogle Scholar
  54. 54.
    Klompas M. What is new in the prevention of nosocomial pneumonia in the ICU? Curr Opin Crit Care. 2017;23(5):378–84.PubMedCrossRefGoogle Scholar
  55. 55.
    Brown SM. Through the valley of shadows: living wills, intensive care, and making medicine human. Oxford: Oxford University Press; 2016.Google Scholar
  56. 56.
    Brown SM, Rozenblum R, Aboumatar H, et al. Defining patient and family engagement in the intensive care unit. Am J Respir Crit Care Med. 2015;191:358–60.PubMedCrossRefGoogle Scholar
  57. 57.
    Quílez ME, López-Aguilar J, Blanch L. Organ crosstalk during acute lung injury, acute respiratory distress syndrome, and mechanical ventilation. Curr Opin Crit Care. 2012;18:23–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Ranieri VM, Rubenfeld GD, ARDS Definition Task Force, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–33.PubMedGoogle Scholar
  59. 59.
    Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800.PubMedCrossRefGoogle Scholar
  60. 60.
    The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.CrossRefGoogle Scholar
  61. 61.
    Needham DM, Yang T, Dinglas VD, et al. Timing of low tidal volume ventilation and intensive care unit mortality in acute respiratory distress syndrome: prospective cohort study. Am J Respir Crit Care Med. 2015;191:177–85.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Briel M, Meade M, Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303:865–73.PubMedCrossRefGoogle Scholar
  63. 63.
    Cavalcanti AB, Suzumura ÉA, Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2017;318:1335–45.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Calfee CS, Delucchi K, Parsons PE, et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2014;2:611–20.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Famous KR, Delucchi K, Ware LB, et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 2017;195:331–8.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Munshi L, Del Sorbo L, Adhikari NKJ, et al. Prone position for acute respiratory distress syndrome: a systematic review and meta-analysis. Ann Am Thorac Soc. 2017;14:S280–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Guérin C, Reignier J, Richard J-C, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159–68.PubMedCrossRefGoogle Scholar
  68. 68.
    Fan E, Cheek F, Chlan L, et al. An official American Thoracic Society clinical practice guideline: the diagnosis of intensive care unit-acquired weakness in adults. Am J Respir Crit Care Med. 2014;190:1437–46.PubMedCrossRefGoogle Scholar
  69. 69.
    Papazian L, Forel J-M, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–16.PubMedCrossRefGoogle Scholar
  70. 70.
    Reevaluation of systemic early neuromuscular blockade (ROSE). 2015.:NCT02509078. Accessed 6 Aug 2017.
  71. 71.
    Frat J-P, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372:2185–96.PubMedCrossRefGoogle Scholar
  72. 72.
    Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195:438–42.PubMedCrossRefGoogle Scholar
  73. 73.
    Young D, Lamb SE, Shah S, et al. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368:806–13.PubMedCrossRefGoogle Scholar
  74. 74.
    Taylor RW, Zimmerman JL, Dellinger RP, et al. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA. 2004;291:1603–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Gebistorf F, Karam O, Wetterslev J, Afshari A. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database Syst Rev. 2016;6:CD002787.Google Scholar
  76. 76.
    Fan E, Del Sorbo L, Goligher EC, et al. An official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195:1253–63.PubMedCrossRefGoogle Scholar
  77. 77.
    Davies A, Jones D, Australia and New Zealand Extracorporeal Membrane Oxygenation (ANZ ECMO) Influenza Investigators, et al. Extracorporeal membrane oxygenation for 2009 influenza A (H1N1) acute respiratory distress syndrome. JAMA. 2009;302:1888–95.PubMedCrossRefGoogle Scholar
  78. 78.
    Zapol WM, Snider MT, Hill JD, et al. Extracorporeal membrane oxygenation in severe acute respiratory failure: a randomized prospective study. JAMA. 1979;242:2193–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Morris AH, Wallace CJ, Menlove RL, et al. Randomized clinical trial of pressure-controlled inverse ratio ventilation and extracorporeal CO2 removal for adult respiratory distress syndrome. Am J Respir Crit Care Med. 1994;149:295–305.PubMedCrossRefGoogle Scholar
  80. 80.
    Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374:1351–63.PubMedCrossRefGoogle Scholar
  81. 81.
    Weiss CH, Krishnan JA, Au DH, et al. An official American Thoracic Society research statement: implementation science in pulmonary, critical care, and sleep medicine. Am J Respir Crit Care Med. 2016;194:1015–25.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Rubenfeld GD. Who cares about preventing acute respiratory distress syndrome? Am J Respir Crit Care Med. 2015;191:255–60.PubMedCrossRefGoogle Scholar
  83. 83.
    Beitler JR, Schoenfeld DA, Thompson BT, Preventing ARDS. progress, promise, and pitfalls. Chest. 2014;146:1102–13.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Serpa Neto A, Cardoso SO, Manetta JA, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308:1651–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Luce JM, Montgomery AB, Marks JD, Turner J, Metz CA, Murray JF. Ineffectiveness of high-dose methylprednisolone in preventing parenchymal lung injury and improving mortality in patients with septic shock. Am Rev Respir Dis. 1988;138:62–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Weigelt JA, Norcross JF, Borman KR, Snyder WH. Early steroid therapy for respiratory failure. Arch Surg. 1985;120:536–40.PubMedCrossRefGoogle Scholar
  87. 87.
    Wan Y-D, Sun T-W, Liu Z-Q, Zhang S-G, Wang L-X, Kan Q-C. Efficacy and safety of corticosteroids for community-acquired pneumonia: a systematic review and meta-analysis. Chest. 2016;149:209–19.PubMedCrossRefGoogle Scholar
  88. 88.
    Kor DJ, Carter RE, Park PK, et al. Effect of aspirin on development of ards in at-risk patients presenting to the emergency department: the LIPS-A randomized clinical trial. JAMA. 2016;315:2406–14.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Levitt JE, Matthay MA. Clinical review: early treatment of acute lung injury–paradigm shift toward prevention and treatment prior to respiratory failure. Crit Care. 2012;16:223.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Damiani E, Adrario E, Girardis M, et al. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care. 2014;18:711.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Asfar P, Schortgen F, Boisramé-Helms J, et al. Hyperoxia and hypertonic saline in patients with septic shock (HYPERS2S): a two-by-two factorial, multicentre, randomised, clinical trial. Lancet Respir Med. 2017;5:180–90.PubMedCrossRefGoogle Scholar
  92. 92.
    Girardis M, Busani S, Damiani E, et al. Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: the OXYGEN-ICU randomized clinical trial. JAMA. 2016;316:1583–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Shankar-Hari M, Phillips GS, Levy ML, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:775–87.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Beesley SJ, Weber G, Sarge T, et al. Septic cardiomyopathy. Crit Care Med.
  95. 95.
    Landesberg G, Levin PD, Gilon D, et al. Myocardial dysfunction in severe sepsis and septic shock: no correlation with inflammatory cytokines in real-life clinical setting. Chest. 2015;148:93–102.PubMedCrossRefGoogle Scholar
  96. 96.
    Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.PubMedCrossRefGoogle Scholar
  97. 97.
    Gordon AC, Perkins GD, Singer M, et al. Levosimendan for the prevention of acute organ dysfunction in sepsis. N Engl J Med. 2016;375:1638–48.PubMedCrossRefGoogle Scholar
  98. 98.
    Lechat P, Packer M, Chalon S, Cucherat M, Arab T, Boissel JP. Clinical effects of beta-adrenergic blockade in chronic heart failure: a meta-analysis of double-blind, placebo-controlled, randomized trials. Circulation. 1998;98:1184–91.PubMedCrossRefGoogle Scholar
  99. 99.
    Reuter DA, Russell JA, Mekontso Dessap A. Beta-blockers in septic shock to optimize hemodynamics? Yes. Intensive Care Med. 2016;42:1607–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Morelli A, Ertmer C, Westphal M, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310:1683–91.PubMedCrossRefGoogle Scholar
  101. 101.
    Walkey AJ, Hammill BG, Curtis LH, Benjamin EJ. Long-term outcomes following development of new-onset atrial fibrillation during sepsis. Chest. 2014;146:1187–95.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Walkey AJ, Evans SR, Winter MR, Benjamin EJ. Practice patterns and outcomes of treatments for atrial fibrillation during sepsis: a propensity-matched cohort study. Chest. 2016;149:74–83.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Hoste EAJ, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41:1411–23.PubMedCrossRefGoogle Scholar
  104. 104.
    Poukkanen M, Vaara ST, Pettila V, et al. Acute kidney injury in patients with severe sepsis in Finnish intensive care units. Acta Anaesthesiol Scand. 2013;57:863–72.PubMedCrossRefGoogle Scholar
  105. 105.
    Friedrich JO, Adhikari N, Herridge MS, Beyene J. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med. 2005;142:510–24.PubMedCrossRefGoogle Scholar
  106. 106.
    Landoni G, Biondi-Zoccai GGL, Tumlin JA, et al. Beneficial impact of fenoldopam in critically ill patients with or at risk for acute renal failure: a meta-analysis of randomized clinical trials. Am J Kidney Dis. 2007;49:56–68.PubMedCrossRefGoogle Scholar
  107. 107.
    Vinsonneau C, Camus C, Combes A, et al. Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicentre randomised trial. Lancet. 2006;368:379–85.PubMedCrossRefGoogle Scholar
  108. 108.
    Payen DM, Guilhot J, Launey Y, et al. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial. Intensive Care Med. 2015;41:975–84.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Gaudry S, Hajage D, Schortgen F, et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med. 2016;375:122–33.PubMedCrossRefGoogle Scholar
  110. 110.
    Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA. 2016;315:2190–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Palevsky PM, Zhang JH, VA/NIH Acute Renal Failure Trial Network, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359:7–20.PubMedCrossRefGoogle Scholar
  112. 112.
    Bellomo R, Cass A, RENAL Replacement Therapy Study Investigators, et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361:1627–38.PubMedCrossRefGoogle Scholar
  113. 113.
    Fourrier F. Severe sepsis, coagulation, and fibrinolysis: dead end or one way? Crit Care Med. 2012;40:2704–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Levi M, van der Poll T. Recombinant human activated protein C: current insights into its mechanism of action. Crit Care. 2007;11(Suppl 5):S3.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Bernard GR, Vincent J-L, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344:699–709.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Warren HS, Suffredini AF, Eichacker PQ, Munford RS. Risks and benefits of activated protein C treatment for severe sepsis. N Engl J Med. 2002;347:1027–30.PubMedCrossRefGoogle Scholar
  117. 117.
    Abraham E, Laterre P-F, Garg R, et al. Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med. 2005;353:1332–41.PubMedCrossRefGoogle Scholar
  118. 118.
    Nadel S, Goldstein B, Williams MD, et al. Drotrecogin alfa (activated) in children with severe sepsis: a multicentre phase III randomised controlled trial. Lancet. 2007;369:836–43.PubMedCrossRefGoogle Scholar
  119. 119.
    Ranieri VM, Thompson BT, Barie PS, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012;366:2055–64.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Warren BL, Eid A, Singer P, et al. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA. 2001;286:1869–78.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Hoffmann JN, Wiedermann CJ, Juers M, et al. Benefit/risk profile of high-dose antithrombin in patients with severe sepsis treated with and without concomitant heparin. Thromb Haemost. 2006;95(5):850–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Vincent J-L, Ramesh MK, Ernest D, et al. A randomized, double-blind, placebo-controlled, Phase 2b study to evaluate the safety and efficacy of recombinant human soluble thrombomodulin, ART-123, in patients with sepsis and suspected disseminated intravascular coagulation. Crit Care Med. 2013;41:2069–79.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Phase 3 Safety and Efficacy Study of ART-123 in Subjects With Severe Sepsis and Coagulopathy. 2012. Accessed 28 Oct 2017.
  124. 124.
    Abraham E, Reinhart K, Opal S, et al. Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA. 2003;290:238–47.PubMedCrossRefGoogle Scholar
  125. 125.
    Wunderink RG, Laterre P-F, François B, et al. Recombinant tissue factor pathway inhibitor in severe community-acquired pneumonia: a randomized trial. Am J Respir Crit Care Med. 2011;183:1561–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Zarychanski R, Abou-Setta AM, Kanji S, et al. The efficacy and safety of heparin in patients with sepsis: a systematic review and metaanalysis. Crit Care Med. 2015;43:511–8.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Goyette RE, Key NS, Ely EW. Hematologic changes in sepsis and their therapeutic implications. Semin Respir Crit Care Med. 2004;25:645–59.PubMedCrossRefGoogle Scholar
  128. 128.
    Amrein K, Schnedl C, Holl A, et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. JAMA. 2014;312:1520–30.PubMedCrossRefGoogle Scholar
  129. 129.
    Vitamin D to improve outcomes by leveraging early treatment (VIOLET). 2017.:NCT03096314. Accessed 5 Aug 2017.
  130. 130.
    López A, Lorente JA, Steingrub J, et al. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med. 2004;32:21–30.PubMedCrossRefGoogle Scholar
  131. 131.
    Vincent J-L, Privalle CT, Singer M, et al. Multicenter, randomized, placebo-controlled phase III study of pyridoxalated hemoglobin polyoxyethylene in distributive shock (PHOENIX). Crit Care Med. 2015;43:57–64.PubMedCrossRefGoogle Scholar
  132. 132.
    Donnino MW, Carney E, Cocchi MN, et al. Thiamine deficiency in critically ill patients with sepsis. J Crit Care. 2010;25:576–81.PubMedCrossRefGoogle Scholar
  133. 133.
    Donnino MW, Andersen LW, Chase M, et al. Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: a pilot study. Crit Care Med. 2016;44:360–7.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Sakr Y, Reinhart K, Bloos F, et al. Time course and relationship between plasma selenium concentrations, systemic inflammatory response, sepsis, and multiorgan failure. Br J Anaesth. 2007;98:775–84.PubMedCrossRefGoogle Scholar
  135. 135.
    Bloos F, Trips E, Nierhaus A, et al. Effect of sodium selenite administration and procalcitonin-guided therapy on mortality in patients with severe sepsis or septic shock: a randomized clinical trial. JAMA Intern Med. 2016;176:1266–76.CrossRefPubMedGoogle Scholar
  136. 136.
    Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas J. Hydrocortisone, Vitamin C, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest. 2017;151:1229–38.PubMedCrossRefGoogle Scholar
  137. 137.
    Reintam Blaser A, Poeze M, Malbrain MLNG, et al. Gastrointestinal symptoms during the first week of intensive care are associated with poor outcome: a prospective multicentre study. Intensive Care Med. 2013;39:899–909.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Klingensmith NJ, Coopersmith CM. The gut as the motor of multiple organ dysfunction in critical illness. Crit Care Clin. 2016;32:203–12.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Price R, MacLennan G, Glen J, SuDDICU Collaboration. Selective digestive or oropharyngeal decontamination and topical oropharyngeal chlorhexidine for prevention of death in general intensive care: systematic review and network meta-analysis. BMJ. 2014;348:g2197.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Manzanares W, Lemieux M, Langlois PL, Wischmeyer PE. Probiotic and synbiotic therapy in critical illness: a systematic review and meta-analysis. Crit Care. 2016;20:1–19.Google Scholar
  141. 141.
    Wei Y, Yang J, Wang J, et al. Successful treatment with fecal microbiota transplantation in patients with multiple organ dysfunction syndrome and diarrhea following severe sepsis. Crit Care. 2016;20:332.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Klingensmith NJ, Coopersmith CM. Fecal microbiota transplantation for multiple organ dysfunction syndrome. Crit Care. 2016;20:398.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Jenniskens M, Langouche L, Vanwijngaerden Y-M, Mesotten D, Van den Berghe G. Cholestatic liver (dys)function during sepsis and other critical illnesses. Intensive Care Med. 2016;42:16–27.PubMedCrossRefGoogle Scholar
  144. 144.
    Pandharipande PP, Girard TD, Jackson JC, et al. Long-term cognitive impairment after critical illness. N Engl J Med. 2013;369:1306–16.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41:263–306.PubMedCrossRefGoogle Scholar
  146. 146.
    Schweickert WD, Pohlman MC, Pohlman AS, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373:1874–82.PubMedCrossRefGoogle Scholar
  147. 147.
    Schoenfeld DA, Bernard GR, Network ARDS. Statistical evaluation of ventilator-free days as an efficacy measure in clinical trials of treatments for acute respiratory distress syndrome. Crit Care Med. 2002;30:1772–7.PubMedCrossRefGoogle Scholar
  148. 148.
    de Grooth H-J, Geenen IL, Girbes AR, Vincent J-L, Parienti J-J, Oudemans-van Straaten HM. SOFA and mortality endpoints in randomized controlled trials: a systematic review and meta-regression analysis. Crit Care. 2017;21:38.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Intermountain Medical CenterMurrayUSA
  2. 2.University of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations