New Biomaterials in Instrumentation Systems

  • R. Piana
  • P. Pellegrino
  • S. Marone


Metastatic tumors often cause pathologic or impending fractures. These lesions require a stable fixation that allows an early postoperative weight bearing and a durable follow-up. During years, orthopedic devices have been built up in several different materials to enhance the properties and combine elevate strength with an elastic modulus as closer as possible to the elastic modulus ofbone. Carbon fiber-polyaryl-ether-ether-ketone (CF-PEEK) composite biomaterials have excellent properties in terms of mechanical strength, flexibility, and compliance, with low elastic modulus. Being these materials composite, they could be designed in order to optimize mechanical properties. Their properties of radiolucency and low interference with magnetic resonance imaging allow good follow-up of fracture healing or the evolution of the lytic lesions; low interaction levels with radiation therapies allow better planning and more effective therapies. Plates, nails, and spinal stabilization systems are available on the market to be used in all conditions where an elastic radiotransparent device is required. Even not experienced surgeons could use CF-PEEK implants with few tips. In this chapter, some cases are shown to demonstrate technical feasibility and imaging results.

Being these relatively new devices, long-term multicentric studies may be required to collect all the possible implant-related complications or failures.


New technologies Carbon fiber PEEK Reconstruction Metastasis 


  1. 1.
    Gortzak Y, Lockwood GA, Mahendra A, Wang Y, Chung PWM, Catton CN, et al. Prediction of pathologic fracture risk of the femur after combined modality treatment of soft tissue sarcoma of the thigh. Cancer. 2010;116(6):1553–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Hillock R, Howard S, et al. Utility of carbon fiber implants in orthopedic surgery: literature review. Reconstr Rev. 2014;4(1). Cited 22 Nov 2016 [Internet].
  3. 3.
    Epari DR, Kassi J-P, Schell H, Duda GN. Timely fracture-healing requires optimization of axial fixation stability. J Bone Joint Surg Am. 2007;89(7):1575–85.PubMedGoogle Scholar
  4. 4.
    Browner BD, Jupiter JB, Krettek C. Skeletal trauma: basic science, management, and reconstruction, 2-volume set. 5th ed. Philadelphia: Saunders; 2014. 2704 pp.Google Scholar
  5. 5.
    Poitout DG. Biomaterials used in orthopedics. In: Poitout DG, editor. Biomechanics and biomaterials in orthopedics. London: Springer; 2004. p. 15–20. Cited 27 Nov 2016 [Internet].CrossRefGoogle Scholar
  6. 6.
    Cheung G, Zalzal P, Bhandari M, Spelt JK, Papini M. Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading. Med Eng Phys. 2004;26(2):93–108.CrossRefPubMedGoogle Scholar
  7. 7.
    Sha M, Guo Z, Fu J, Li J, Yuan CF, Shi L, et al. The effects of nail rigidity on fracture healing in rats with osteoporosis. Acta Orthop. 2009;80(1):135–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ben-Or M, Shavit R, Ben-Tov T, Salai M, Steinberg EL. Control of the micromovements of a composite-material nail design: a finite element analysis. J Mech Behav Biomed Mater. 2016;54:223–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Saidpour SH. Assessment of carbon fibre composite fracture fixation plate using finite element analysis. Ann Biomed Eng. 2006;34(7):1157–63.CrossRefPubMedGoogle Scholar
  10. 10.
    Woo SL, Lothringer KS, Akeson WH, Coutts RD, Woo YK, Simon BR, et al. Less rigid internal fixation plates: historical perspectives and new concepts. J Orthop Res. 1984;1(4):431–49.CrossRefPubMedGoogle Scholar
  11. 11.
    Tayton K, Johnson-Nurse C, McKibbin B, Bradley J, Hastings G. The use of semi-rigid carbon-fibre-reinforced plastic plates for fixation of human fractures. Results of preliminary trials. J Bone Joint Surg Br. 1982;64(1):105–11.CrossRefPubMedGoogle Scholar
  12. 12.
    Manninen MJ, Päivärinta U, Taurio R, Törmälä P, Suuronen R, Räihä J, et al. Polylactide screws in the fixation of olecranon osteotomies. A mechanical study in sheep. Acta Orthop Scand. 1992;63(4):437–42.CrossRefPubMedGoogle Scholar
  13. 13.
    Suuronen R, Pohjonen T, Vasenius J, Vainionpää S. Comparison of absorbable self-reinforced multilayer poly-l-lactide and metallic plates for the fixation of mandibular body osteotomies: an experimental study in sheep. J Oral Maxillofac Surg. 1992;50(3):255–62.CrossRefPubMedGoogle Scholar
  14. 14.
    Skinner HB. Composite technology for total hip arthroplasty. Clin Orthop. 1988;235:224–36.Google Scholar
  15. 15.
    Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28(32):4845–69.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Utzschneider S, Becker F, Grupp TM, Sievers B, Paulus A, Gottschalk O, et al. Inflammatory response against different carbon fiber-reinforced PEEK wear particles compared with UHMWPE in vivo. Acta Biomater. 2010;6(11):4296–304.CrossRefPubMedGoogle Scholar
  17. 17.
    Scotchford CA, Garle MJ, Batchelor J, Bradley J, Grant DM. Use of a novel carbon fibre composite material for the femoral stem component of a THR system: in vitro biological assessment. Biomaterials. 2003;24(26):4871–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Brown SA, Hastings RS, Mason JJ, Moet A. Characterization of short-fibre reinforced thermoplastics for fracture fixation devices. Biomaterials. 1990;11(8):541–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Hak DJ, Mauffrey C, Seligson D, Lindeque B. Use of carbon-fiber-reinforced composite implants in orthopedic surgery. Orthopedics. 2014;37(12):825–30. Lindeque BGP, editor.CrossRefPubMedGoogle Scholar
  20. 20.
    Koff MF, Shah P, Koch KM, Potter HG. Quantifying image distortion of orthopedic materials in magnetic resonance imaging. J Magn Reson Imaging. 2013;38(3):610–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Zimel MN, Hwang S, Riedel ER, Healey JH. Carbon fiber intramedullary nails reduce artifact in postoperative advanced imaging. Skelet Radiol. 2015;44(9):1317–25.CrossRefGoogle Scholar
  22. 22.
    Steinberg EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M. Carbon fiber reinforced PEEK optima—a composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater. 2013;17:221–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Baidya KP, Ramakrishna S, Rahman M, Ritchie A. Quantitative radiographic analysis of fiber reinforced polymer composites. J Biomater Appl. 2001;15(3):279–89.CrossRefPubMedGoogle Scholar
  24. 24.
    Sofka CM, Potter HG, Adler RS, Pavlov H. Musculoskeletal imaging update: current applications of advanced imaging techniques to evaluate the early and long-term complications of patients with orthopedic implants. HSS J. 2006;2(1):73–7.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Buckwalter KA, Lin C, Ford JM. Managing postoperative artifacts on computed tomography and magnetic resonance imaging. Semin Musculoskelet Radiol. 2011;15(4):309–19.CrossRefPubMedGoogle Scholar
  26. 26.
    Xin-ye N, Xiao-bin T, Chang-ran G, Da C. The prospect of carbon fiber implants in radiotherapy. J Appl Clin Med Phys. 2012;13(4). Cited 18 Nov 2016 [Internet].CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Nevelsky A, Borzov E, Daniel S, Bar-Deroma R. Perturbation effects of the carbon fiber-PEEK screws on radiotherapy dose distribution. J Appl Clin Med Phys. 2017;18(2):62–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tarallo L, Mugnai R, Adani R, Zambianchi F, Catani F. A new volar plate made of carbon-fiber-reinforced polyetheretherketon for distal radius fracture: analysis of 40 cases. J Orthop Traumatol. 2014;15(4):277–83.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • R. Piana
    • 1
  • P. Pellegrino
    • 1
  • S. Marone
    • 1
  1. 1.Orthopaedic Oncology and Reconstructive Surgery UnitCittà della salute e della scienza, CTO HospitalTurinItaly

Personalised recommendations