Internal Tooth Anatomy and Root Canal Instrumentation

  • José F. SiqueiraJrEmail author
  • Isabela N. Rôças
  • Domenico Ricucci


Root canal preparation can be regarded as the most important phase of the endodontic treatment. Its main purposes are to clean, disinfect, and shape root canals. These objectives, however, may be difficult to be attained in curved root canals or in teeth with complex internal anatomy. Residual bacteria and debris may remain unaffected in unprepared canal walls, isthmuses, lateral canals, apical ramifications, dentinal tubules, and recesses from oval/flattened canals and compromise the treatment outcome. Some strategies have been devised to improve the effects of chemomechanical procedures in teeth with root curvatures and complex anatomy.


Apical limit Apical size Cleaning and shaping Endodontic instruments Root canal anatomy Root canal preparation Treatment outcome 


  1. 1.
    Siqueira JF Jr, Rôças IN. Clinical implications and microbiology of bacterial persistence after treatment procedures. J Endod. 2008;34:1291–301.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Tronstad L, Asbjornsen K, Doving L, Pedersen I, Eriksen HM. Influence of coronal restorations on the periapical health of endodontically treated teeth. Endod Dent Traumatol. 2000;16:218–21.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Moreno JO, Alves FR, Goncalves LS, Martinez AM, Rocas IN, Siqueira JF Jr. Periradicular status and quality of root canal fillings and coronal restorations in an urban Colombian population. J Endod. 2013;39:600–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Hommez GM, Coppens CR, De Moor RJ. Periapical health related to the quality of coronal restorations and root fillings. Int Endod J. 2002;35:680–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Tavares PB, Bonte E, Boukpessi T, Siqueira JF Jr, Lasfargues JJ. Prevalence of apical periodontitis in root canal-treated teeth from an urban French population: influence of the quality of root canal fillings and coronal restorations. J Endod. 2009;35:810–3.PubMedCrossRefGoogle Scholar
  6. 6.
    Ricucci D, Siqueira JF Jr. Biofilms and apical periodontitis: study of prevalence and association with clinical and histopathologic findings. J Endod. 2010;36:1277–88.PubMedCrossRefGoogle Scholar
  7. 7.
    Nair PNR. Light and electron microscopic studies of root canal flora and periapical lesions. J Endod. 1987;13:29–39.CrossRefGoogle Scholar
  8. 8.
    Siqueira JF Jr, Rôças IN, Lopes HP. Patterns of microbial colonization in primary root canal infections. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;93:174–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Molven O, Olsen I, Kerekes K. Scanning electron microscopy of bacteria in the apical part of root canals in permanent teeth with periapical lesions. Endod Dent Traumatol. 1991;7:226–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ricucci D, Siqueira JF Jr, Bate AL, Pitt Ford TR. Histologic investigation of root canal-treated teeth with apical periodontitis: a retrospective study from twenty-four patients. J Endod. 2009;35:493–502.PubMedCrossRefGoogle Scholar
  11. 11.
    Carr GB, Schwartz RS, Schaudinn C, Gorur A, Costerton JW. Ultrastructural examination of failed molar retreatment with secondary apical periodontitis: an examination of endodontic biofilms in an endodontic retreatment failure. J Endod. 2009;35:1303–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Schaudinn C, Carr G, Gorur A, Jaramillo D, Costerton JW, Webster P. Imaging of endodontic biofilms by combined microscopy (FISH/cLSM-SEM). J Microsc. 2009;235:124–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Nair PN, Henry S, Cano V, Vera J. Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after “one-visit” endodontic treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99:231–52.PubMedCrossRefGoogle Scholar
  14. 14.
    Ricucci D, Siqueira JF Jr. Apical actinomycosis as a continuum of intraradicular and extraradicular infection: case report and critical review on its involvement with treatment failure. J Endod. 2008;34:1124–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Ricucci D, Siqueira JF Jr. Fate of the tissue in lateral canals and apical ramifications in response to pathologic conditions and treatment procedures. J Endod. 2010;36:1–15.CrossRefGoogle Scholar
  16. 16.
    Vera J, Siqueira JF Jr, Ricucci D, Loghin S, Fernandez N, Flores B, et al. One- versus two-visit endodontic treatment of teeth with apical periodontitis: a histobacteriologic study. J Endod. 2012;38:1040–52.CrossRefGoogle Scholar
  17. 17.
    Peters LB, Wesselink PR, Buijs JF, van Winkelhoff AJ. Viable bacteria in root dentinal tubules of teeth with apical periodontitis. J Endod. 2001;27:76–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Vieira AR, Siqueira JF Jr, Ricucci D, Lopes WS. Dentinal tubule infection as the cause of recurrent disease and late endodontic treatment failure: a case report. J Endod. 2012;38:250–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Estrela C, Rabelo LE, de Souza JB, Alencar AH, Estrela CR, Sousa-Neto MD, et al. Frequency of root canal isthmi in human permanent teeth determined by cone-beam computed tomography. J Endod. 2015;41:1535–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Mannocci F, Peru M, Sherriff M, Cook R, Pitt Ford TR. The isthmuses of the mesial root of mandibular molars: a micro-computed tomographic study. Int Endod J. 2005;38:558–63.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gu L, Wei X, Ling J, Huang X. A microcomputed tomographic study of canal isthmuses in the mesial root of mandibular first molars in a Chinese population. J Endod. 2009;35:353–6.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    von Arx T. Frequency and type of canal isthmuses in first molars detected by endoscopic inspection during periradicular surgery. Int Endod J. 2005;38:160–8.CrossRefGoogle Scholar
  23. 23.
    Hsu YY, Kim S. The resected root surface. The issue of canal isthmuses. Dent Clin North Am. 1997;41:529–40.PubMedPubMedCentralGoogle Scholar
  24. 24.
    De Deus QD. Frequency, location, and direction of the lateral, secondary, and accessory canals. J Endod. 1975;1:361–6.CrossRefGoogle Scholar
  25. 25.
    Vertucci FJ. Root canal anatomy of the human permanent teeth. Oral Surg Oral Med Oral Pathol. 1984;58:589–99.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Dammaschke T, Witt M, Ott K, Schafer E. Scanning electron microscopic investigation of incidence, location, and size of accessory foramina in primary and permanent molars. Quintessence Int. 2004;35:699–705.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kuttler Y. Microscopic investigation of root apexes. J Am Dent Assoc. 1955;50:544–52.CrossRefGoogle Scholar
  28. 28.
    Ponce EH, Vilar Fernandez JA. The cemento-dentino-canal junction, the apical foramen, and the apical constriction: evaluation by optical microscopy. J Endod. 2003;29:214–9.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Green D. A stereomicroscopic study of the root apices of 400 maxillary and mandibular anterior teeth. Oral Surg Oral Med Oral Pathol. 1956;9:1224–32.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Matsuo T, Shirakami T, Ozaki K, Nakanishi T, Yumoto H, Ebisu S. An immunohistological study of the localization of bacteria invading root pulpal walls of teeth with periapical lesions. J Endod. 2003;29:194–200.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Jou YT, Karabucak B, Levin J, Liu D. Endodontic working width: current concepts and techniques. Dent Clin N Am. 2004;48:323–35.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Wu MK, R'Oris A, Barkis D, Wesselink PR. Prevalence and extent of long oval canals in the apical third. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89:739–43.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ricucci D, Loghin S, Siqueira JF Jr. Exuberant biofilm infection in a lateral canal as the cause of short-term endodontic treatment failure: report of a case. J Endod. 2013;39:712–8.CrossRefGoogle Scholar
  34. 34.
    Arnold M, Ricucci D, Siqueira JF Jr. Infection in a complex network of apical ramifications as the cause of persistent apical periodontitis: a case report. J Endod. 2013;39:1179–84.CrossRefGoogle Scholar
  35. 35.
    Nair PN, Sjögren U, Krey G, Kahnberg KE, Sundqvist G. Intraradicular bacteria and fungi in root-filled, asymptomatic human teeth with therapy-resistant periapical lesions: a long-term light and electron microscopic follow-up study. J Endod. 1990;16:580–8.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Roane JB, Sabala CL, Duncanson MG Jr. The “balanced force” concept for instrumentation of curved canals. J Endod. 1985;11:203–11.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Short JA, Morgan LA, Baumgartner JC. A comparison of canal centering ability of four instrumentation techniques. J Endod. 1997;23:503–7.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Hülsmann M, Peters OA, Dummer PMH. Mechanical preparation of root canals: shaping goals, techniques and means. Endod Top. 2005;10:30–76.CrossRefGoogle Scholar
  39. 39.
    Coleman CL, Svec TA. Analysis of NiTi versus stainless steel instrumentation in resin simulated canals. J Endod. 1997;23:232–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Yoshimine Y, Ono M, Akamine A. The shaping effects of three nickel-titanium rotary instruments in simulated S-shaped canals. J Endod. 2005;31:373–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Anderson ME, Price JW, Parashos P. Fracture resistance of electropolished rotary nickel-titanium endodontic instruments. J Endod. 2007;33:1212–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Boessler C, Paqué F, Peters OA. The effect of electropolishing on torque and force during simulated root canal preparation with ProTaper shaping files. J Endod. 2009;35:102–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Kuhn G, Tavernier B, Jordan L. Influence of structure on nickel-titanium endodontic instruments failure. J Endod. 2001;27:516–20.PubMedCrossRefGoogle Scholar
  44. 44.
    Parashos P, Messer HH. Rotary NiTi instrument fracture and its consequences. J Endod. 2006;32:1031–43.PubMedCrossRefGoogle Scholar
  45. 45.
    Tripi TR, Bonaccorso A, Condorelli GG. Cyclic fatigue of different nickel-titanium endodontic rotary instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;102:e106–14.PubMedCrossRefGoogle Scholar
  46. 46.
    Berendt C. Inventor Method of preparing NiTinol for use in manufacturing instruments with improved fatigue resistance. US patent Application 200700721472007.Google Scholar
  47. 47.
    Alapati SB, Brantley WA, Iijima M, Clark WA, Kovarik L, Buie C, et al. Metallurgical characterization of a new nickel-titanium wire for rotary endodontic instruments. J Endod. 2009;35:1589–93.PubMedCrossRefGoogle Scholar
  48. 48.
    Gambarini G, Grande NM, Plotino G, Somma F, Garala M, De Luca M, et al. Fatigue resistance of engine-driven rotary nickel-titanium instruments produced by new manufacturing methods. J Endod. 2008;34:1003–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Siqueira JF Jr, Rôças IN, Favieri A, Machado AG, Gahyva SM, Oliveira JC, et al. Incidence of postoperative pain after intracanal procedures based on an antimicrobial strategy. J Endod. 2002;28:457–60.CrossRefGoogle Scholar
  50. 50.
    Torabinejad M, Cymerman JJ, Frankson M, Lemon RR, Maggio JD, Schilder H. Effectiveness of various medications on postoperative pain following complete instrumentation. J Endod. 1994;20:345–54.PubMedCrossRefGoogle Scholar
  51. 51.
    Imura N, Zuolo ML. Factors associated with endodontic flare-ups: a prospective study. Int Endod J. 1995;28:261–5.PubMedCrossRefGoogle Scholar
  52. 52.
    Saini HR, Sangwan P, Sangwan A. Pain following foraminal enlargement in mandibular molars with necrosis and apical periodontitis: a randomized controlled trial. Int Endod J. 2016;49:1116–23.PubMedCrossRefGoogle Scholar
  53. 53.
    Yaylali IE, Teke A, Tunca YM. The effect of foraminal enlargement of necrotic teeth with a continuous rotary system on postoperative pain: a randomized controlled trial. J Endod. 2017;43:359–63.PubMedCrossRefGoogle Scholar
  54. 54.
    Sjögren U, Hagglund B, Sundqvist G, Wing K. Factors affecting the long-term results of endodontic treatment. J Endod. 1990;16:498–504.PubMedCrossRefGoogle Scholar
  55. 55.
    Strindberg LZ. The dependence of the results of pulp therapy on certain factors. Acta Odontol Scand. 1956;14(suppl 21):1–175.Google Scholar
  56. 56.
    Friedman S. Treatment outcome and prognosis of endodontic therapy. In: Ørstavik D, Pitt Ford T, editors. Essential endodontology. Oxford: Blackwell Science Ltd; 1998. p. 367–401.Google Scholar
  57. 57.
    Spångberg LSW. Endodontic treatment of teeth without apical periodontitis. In: Ørstavik D, Pitt Ford T, editors. Essential endodontology. Oxford: Blackwell Science Ltd; 1998. p. 211–41.Google Scholar
  58. 58.
    Siqueira JF Jr, Lopes HP. Bacteria on the apical root surfaces of untreated teeth with periradicular lesions: a scanning electron microscopy study. Int Endod J. 2001;34:216–20.PubMedCrossRefGoogle Scholar
  59. 59.
    Fukushima H, Yamamoto K, Hirohata K, Sagawa H, Leung KP, Walker CB. Localization and identification of root canal bacteria in clinically asymptomatic periapical pathosis. J Endod. 1990;16:534–8.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Armada-Dias L, Breda J, Provenzano JC, Breitenbach M, Rôças IN, Gahyva SM, et al. Development of periradicular lesions in normal and diabetic rats. J Appl Oral Sci. 2006;14:371–5.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Tani-Ishii N, Wang CY, Tanner A, Stashenko P. Changes in root canal microbiota during the development of rat periapical lesions. Oral Microbiol Immunol. 1994;9:129–35.PubMedCrossRefGoogle Scholar
  62. 62.
    Ricucci D, Pascon EA, Ford TR, Langeland K. Epithelium and bacteria in periapical lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:239–49.CrossRefGoogle Scholar
  63. 63.
    Siqueira JF Jr, Lopes HP. Chemomechanical preparation. In: Siqueira Jr JF, editor. Treatment of endodontic infections. London: Quintessence Publishing; 2011. p. 236–84.Google Scholar
  64. 64.
    Ng YL, Mann V, Gulabivala K. A prospective study of the factors affecting outcomes of nonsurgical root canal treatment: part 1: periapical health. Int Endod J. 2011;44:583–609.CrossRefGoogle Scholar
  65. 65.
    Ricucci D, Russo J, Rutberg M, Burleson JA, Spångberg LS. A prospective cohort study of endodontic treatments of 1,369 root canals: results after 5 years. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112:825–42.CrossRefGoogle Scholar
  66. 66.
    McDonald NJ. The electronic determination of working length. Dent Clin N Am. 1992;36:293–307.PubMedGoogle Scholar
  67. 67.
    Tsesis I, Blazer T, Ben-Izhack G, Taschieri S, Del Fabbro M, Corbella S, Rosen E. The precision of electronic apex locators in working length determination: a systematic review and meta-analysis of the literature. J Endod. 2015;41:1818–23.PubMedCrossRefGoogle Scholar
  68. 68.
    Gordon MPJ, Chandler NP. Electronic apex locators. Int Endod J. 2004;37:425–37.CrossRefGoogle Scholar
  69. 69.
    McDonald NJ, Pileggi R, Glickman G, Varella C. An in vivo evaluation of third generation apex locators [abstract]. J Dent Res. 1999;78:373.Google Scholar
  70. 70.
    Shabahang S, Goon WW, Gluskin AH. An in vivo evaluation of Root ZX electronic apex locator. J Endod. 1996;22:616–8.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Czerw RJ, Fulkerson MS, Donnelly JC, Walmann JO. In vitro evaluation of the accuracy of several electronic apex locators. J Endod. 1995;21:572–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Mayeda DL, Simon JH, Aimar DF, Finley K. In vivo measurement accuracy in vital and necrotic canals with the Endex apex locator. J Endod. 1993;19:545–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Pommer O, Stamm O, Attin T. Influence of the canal contents on the electrical assisted determination of the length of root canals. J Endod. 2002;28:83–5.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Vieyra JP, Acosta J, Mondaca JM. Comparison of working length determination with radiographs and two electronic apex locators. Int Endod J. 2010;43:16–20.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Kerekes K, Tronstad L. Morphometric observations on the root canals of human molars. J Endod. 1977;3:114–8.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Kerekes K, Tronstad L. Morphometric observations on root canals of human premolars. J Endod. 1977;3:74–9.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Kerekes K, Tronstad L. Morphometric observations on root canals of human anterior teeth. J Endod. 1977;3:24–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Siqueira JF Jr, Lima KC, Magalhães FA, Lopes HP, de Uzeda M. Mechanical reduction of the bacterial population in the root canal by three instrumentation techniques. J Endod. 1999;25:332–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Rollison S, Barnett F, Stevens RH. Efficacy of bacterial removal from instrumented root canals in vitro related to instrumentation technique and size. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94:366–71.PubMedCrossRefGoogle Scholar
  80. 80.
    Mickel AK, Chogle S, Liddle J, Huffaker K, Jones JJ. The role of apical size determination and enlargement in the reduction of intracanal bacteria. J Endod. 2007;33:21–3.PubMedCrossRefGoogle Scholar
  81. 81.
    Card SJ, Sigurdsson A, Ørstavik D, Trope M. The effectiveness of increased apical enlargement in reducing intracanal bacteria. J Endod. 2002;28:779–83.PubMedCrossRefGoogle Scholar
  82. 82.
    Ørstavik D, Kerekes K, Molven O. Effects of extensive apical reaming and calcium hydroxide dressing on bacterial infection during treatment of apical periodontitis: a pilot study. Int Endod J. 1991;24:1–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Shuping GB, Ørstavik D, Sigurdsson A, Trope M. Reduction of intracanal bacteria using nickel-titanium rotary instrumentation and various medications. J Endod. 2000;26:751–5.PubMedCrossRefGoogle Scholar
  84. 84.
    McGurkin-Smith R, Trope M, Caplan D, Sigurdsson A. Reduction of intracanal bacteria using GT rotary instrumentation, 5.25% NaOCl, EDTA, and Ca(OH)2. J Endod. 2005;31:359–63.PubMedCrossRefGoogle Scholar
  85. 85.
    Dalton BC, Ørstavik D, Phillips C, Pettiette M, Trope M. Bacterial reduction with nickel-titanium rotary instrumentation. J Endod. 1998;24:763–7.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Rodrigues RCV, Zandi H, Kristoffersen AK, Enersen M, Mdala I, Ørstavik D, et al. Influence of the apical preparation size and the irrigant type on bacterial reduction in root canal-treated teeth with apical periodontitis. J Endod. 2017;43:1058–63.PubMedCrossRefGoogle Scholar
  87. 87.
    Usman N, Baumgartner JC, Marshall JG. Influence of instrument size on root canal debridement. J Endod. 2004;30:110–2.PubMedCrossRefGoogle Scholar
  88. 88.
    Albrecht LJ, Baumgartner JC, Marshall JG. Evaluation of apical debris removal using various sizes and tapers of ProFile GT files. J Endod. 2004;30:425–8.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Saini HR, Tewari S, Sangwan P, Duhan J, Gupta A. Effect of different apical preparation sizes on outcome of primary endodontic treatment: a randomized controlled trial. J Endod. 2012;38:1309–15.PubMedCrossRefGoogle Scholar
  90. 90.
    Aminoshariae A, Kulild JC. Master apical file size - smaller or larger: a systematic review of healing outcomes. Int Endod J. 2015;48:639–47.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Rundquist BD, Versluis A. How does canal taper affect root stresses? Int Endod J. 2006;39:226–37.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Trope M, Debelian G. Endodontics manual for the general dentist. London: Quintessence Publishing Co; 2005.Google Scholar
  93. 93.
    Byström A, Sundqvist G. Bacteriologic evaluation of the effect of 0.5 percent sodium hypochlorite in endodontic therapy. Oral Surg Oral Med Oral Pathol. 1983;55:307–12.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Siqueira JF Jr, Machado AG, Silveira RM, Lopes HP, de Uzeda M. Evaluation of the effectiveness of sodium hypochlorite used with three irrigation methods in the elimination of Enterococcus faecalis from the root canal, in vitro. Int Endod J. 1997;30:279–82.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Siqueira JF Jr, Rôças IN, Favieri A, Lima KC. Chemomechanical reduction of the bacterial population in the root canal after instrumentation and irrigation with 1%, 2.5%, and 5.25% sodium hypochlorite. J Endod. 2000;26:331–4.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Brito PR, Souza LC, Machado de Oliveira JC, Alves FR, De-Deus G, Lopes HP, et al. Comparison of the effectiveness of three irrigation techniques in reducing intracanal Enterococcus faecalis populations: an in vitro study. J Endod. 2009;35:1422–7.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Rôças IN, Provenzano JC, Neves MA, Siqueira JF Jr. Disinfecting effects of rotary instrumentation with either 2.5% sodium hypochlorite or 2% chlorhexidine as the main irrigant: a randomized clinical study. J Endod. 2016;42:943–7.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Vianna ME, Gomes BP, Berber VB, Zaia AA, Ferraz CC, de Souza-Filho FJ. In vitro evaluation of the antimicrobial activity of chlorhexidine and sodium hypochlorite. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97:79–84.PubMedCrossRefGoogle Scholar
  99. 99.
    Ohara P, Torabinejad M, Kettering JD. Antibacterial effects of various endodontic irrigants on selected anaerobic bacteria. Endod Dent Traumatol. 1993;9:95–100.PubMedCrossRefGoogle Scholar
  100. 100.
    Stojicic S, Zivkovic S, Qian W, Zhang H, Haapasalo M. Tissue dissolution by sodium hypochlorite: effect of concentration, temperature, agitation, and surfactant. J Endod. 2010;36:1558–62.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Baumgartner JC, Cuenin PR. Efficacy of several concentrations of sodium hypochlorite for root canal irrigation. J Endod. 1992;18:605–12.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Grossman LI, Meinam BW. Solution of pulp tissue by chemical agent. J Am Dent Assoc. 1941;28:223–5.CrossRefGoogle Scholar
  103. 103.
    Stanley A, Wilson M, Newman HN. The in vitro effects of chlorhexidine on subgingival plaque bacteria. J Clin Periodontol. 1989;16:259–64.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Siqueira JF Jr, de Uzeda M. Intracanal medicaments: evaluation of the antibacterial effects of chlorhexidine, metronidazole, and calcium hydroxide associated with three vehicles. J Endod. 1997;23:167–9.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Rosenthal S, Spangberg L, Safavi K. Chlorhexidine substantivity in root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;98:488–92.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Basrani B, Santos JM, Tjaderhane L, Grad H, Gorduysus O, Huang J, et al. Substantive antimicrobial activity in chlorhexidine-treated human root dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94:240–5.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Yesilsoy C, Whitaker E, Cleveland D, Phillips E, Trope M. Antimicrobial and toxic effects of established and potential root canal irrigants. J Endod. 1995;21:513–5.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Tanomaru Filho M, Leonardo MR, Silva LAB, Anibal FF, Faccioli LH. Inflammatory response to different endodontic irrigating solutions. Int Endod J. 2002;35:735–9.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Ercan E, Ozekinci T, Atakul F, Gul K. Antibacterial activity of 2% chlorhexidine gluconate and 5.25% sodium hypochlorite in infected root canal: in vivo study. J Endod. 2004;30:84–7.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Jeansonne MJ, White RR. A comparison of 2.0% chlorhexidine gluconate and 5.25% sodium hypochlorite as antimicrobial endodontic irrigants. J Endod. 1994;20:276–8.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Siqueira JF Jr, Rôças IN, Paiva SS, Guimarães-Pinto T, Magalhães KM, Lima KC. Bacteriologic investigation of the effects of sodium hypochlorite and chlorhexidine during the endodontic treatment of teeth with apical periodontitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104:122–30.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Rôças IN, Siqueira JF Jr. Comparison of the in vivo antimicrobial effectiveness of sodium hypochlorite and chlorhexidine used as root canal irrigants: a molecular microbiology study. J Endod. 2011;37:143–50.PubMedCrossRefGoogle Scholar
  113. 113.
    Oncag O, Hosgor M, Hilmioglu S, Zekioglu O, Eronat C, Burhanoglu D. Comparison of antibacterial and toxic effects of various root canal irrigants. Int Endod J. 2003;36:423–32.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Naenni N, Thoma K, Zehnder M. Soft tissue dissolution capacity of currently used and potential endodontic irrigants. J Endod 2004;30:785-7.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Zamany A, Safavi K, Spångberg LS. The effect of chlorhexidine as an endodontic disinfectant. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;96:578–81.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Trope M, Debelian G. Endodontic treatment of apical periodontitis. In: Ørstavik D, Pitt Ford T, editors. Essential endodontology. 2nd ed. Oxford: Blackwell Munksgaard Ltd; 2008. p. 347–80.Google Scholar
  117. 117.
    Alves FR, Almeida BM, Neves MA, Moreno JO, Rôças IN, Siqueira JF Jr. Disinfecting oval-shaped root canals: effectiveness of different supplementary approaches. J Endod. 2011;37:496–501.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Paiva SS, Siqueira JF Jr, Rôças IN, Carmo FL, Leite DC, Ferreira DC, et al. Clinical antimicrobial efficacy of NiTi rotary instrumentation with NaOCl irrigation, final rinse with chlorhexidine and interappointment medication: a molecular study. Int Endod J. 2013;46:225–33.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Siqueira JF Jr, Rôças IN, Santos SR, Lima KC, Magalhães FA, de Uzeda M. Efficacy of instrumentation techniques and irrigation regimens in reducing the bacterial population within root canals. J Endod. 2002;28:181–4.PubMedCrossRefGoogle Scholar
  120. 120.
    Basrani BR, Manek S, Sodhi RN, Fillery E, Manzur A. Interaction between sodium hypochlorite and chlorhexidine gluconate. J Endod. 2007;33:966–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Mader CL, Baumgartner JC, Peters DD. Scanning electron microscopic investigation of the smeared layer on root canal walls. J Endod. 1984;10:477–83.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Pashley DH. Smear layer: physiological considerations. Oper Dent Suppl. 1984;3:13–29.PubMedGoogle Scholar
  123. 123.
    Torabinejad M, Handysides R, Khademi AA, Bakland LK. Clinical implications of the smear layer in endodontics: a review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94:658–66.PubMedCrossRefGoogle Scholar
  124. 124.
    Brannstrom M. Smear layer: pathological and treatment considerations. Oper Dent Suppl. 1984;3:35–42.PubMedGoogle Scholar
  125. 125.
    Goldman M, Goldman LB, Cavaleri R, Bogis J, Lin PS. The efficacy of several endodontic irrigating solutions: a scanning electron microscopic study: part 2. J Endod. 1982;8:487–92.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Wayman BE, Kopp WM, Pinero GJ, Lazzari EP. Citric and lactic acids as root canal irrigants in vitro. J Endod. 1979;5:258–65.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Torabinejad M, Khademi AA, Babagoli J, Cho Y, Johnson WB, Bozhilov K, et al. A new solution for the removal of the smear layer. J Endod. 2003;29:170–5.PubMedCrossRefGoogle Scholar
  128. 128.
    Giardino L, Ambu E, Savoldi E, Rimondini R, Cassanelli C, Debbia EA. Comparative evaluation of antimicrobial efficacy of sodium hypochlorite, MTAD, and tetraclean against Enterococcus faecalis biofilm. J Endod. 2007;33:852–5.PubMedCrossRefGoogle Scholar
  129. 129.
    Peters OA, Schönenberger K, Laib A. Effects of four NiTi preparation techniques on root canal geometry assessed by micro computed tomography. Int Endod J. 2001;34:221–30.PubMedCrossRefGoogle Scholar
  130. 130.
    Paqué F, Ganahl D, Peters OA. Effects of root canal preparation on apical geometry assessed by micro-computed tomography. J Endod. 2009;35:1056–9.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Versiani MA, Leoni GB, Steier L, De-Deus G, Tassani S, Pecora JD, et al. Micro-computed tomography study of oval-shaped canals prepared with the Self-adjusting File, Reciproc, WaveOne, and ProTaper Universal systems. J Endod. 2013;39:1060–6.PubMedCrossRefGoogle Scholar
  132. 132.
    Siqueira JF Jr, Alves FR, Versiani MA, Rôças IN, Almeida BM, Neves MA, et al. Correlative bacteriologic and micro-computed tomographic analysis of mandibular molar mesial canals prepared by Self-adjusting File, Reciproc, and Twisted File systems. J Endod. 2013;39:1044–50.PubMedCrossRefGoogle Scholar
  133. 133.
    Paqué F, Zehnder M, De-Deus G. Microtomography-based comparison of reciprocating single-file F2 ProTaper technique versus rotary full sequence. J Endod. 2011;37:1394–7.PubMedCrossRefGoogle Scholar
  134. 134.
    Markvart M, Darvann TA, Larsen P, Dalstra M, Kreiborg S, Bjørndal L. Micro-CT analyses of apical enlargement and molar root canal complexity. Int Endod J. 2012;45:273–81.PubMedCrossRefGoogle Scholar
  135. 135.
    Peters OA, Arias A, Paqué F. A micro-computed tomographic assessment of root canal preparation with a novel instrument, TRUShape, in mesial roots of mandibular molars. J Endod. 2015;41:1545–50.PubMedCrossRefGoogle Scholar
  136. 136.
    Wu MK, van der Sluis LW, Wesselink PR. The capability of two hand instrumentation techniques to remove the inner layer of dentine in oval canals. Int Endod J. 2003;36:218–24.PubMedCrossRefGoogle Scholar
  137. 137.
    Paqué F, Balmer M, Attin T, Peters OA. Preparation of oval-shaped root canals in mandibular molars using nickel-titanium rotary instruments: a micro-computed tomography study. J Endod. 2010;36:703–7.PubMedCrossRefGoogle Scholar
  138. 138.
    Busquim S, Cunha RS, Freire L, Gavini G, Machado ME, Santos M. A micro-computed tomography evaluation of long-oval canal preparation using reciprocating or rotary systems. Int Endod J. 2015;48:1001–6.PubMedCrossRefGoogle Scholar
  139. 139.
    Versiani MA, Pécora JD, de Sousa-Neto MD. Flat-oval root canal preparation with Self-adjusting File instrument: a micro-computed tomography study. J Endod. 2011;37:1002–7.PubMedCrossRefGoogle Scholar
  140. 140.
    Peters OA, Paqué F. Root canal preparation of maxillary molars with the Self-adjusting File: a micro-computed tomography study. J Endod. 2011;37:53–7.PubMedCrossRefGoogle Scholar
  141. 141.
    Paqué F, Peters OA. Micro-computed tomography evaluation of the preparation of long oval root canals in mandibular molars with the Selfadjusting File. J Endod. 2011;37:517–21.PubMedCrossRefGoogle Scholar
  142. 142.
    Metzger Z, Zary R, Cohen R, Teperovich E, Paqué F. The quality of root canal preparation and root canal obturation in canals treated with rotary versus Self-adjusting Files: a three-dimensional micro-computed tomographic study. J Endod. 2010;36:1569–73.PubMedCrossRefGoogle Scholar
  143. 143.
    Metzger Z, Teperovich E, Cohen R, Zary R, Paqué F, Hülsmann M. The Self-adjusting File (SAF). Part 3: removal of debris and smear layer – a scanning electron microscope study. J Endod. 2010;36:697–702.PubMedCrossRefGoogle Scholar
  144. 144.
    Sakamoto M, Siqueira JF Jr, Rôças IN, Benno Y. Bacterial reduction and persistence after endodontic treatment procedures. Oral Microbiol Immunol. 2007;22:19–23.PubMedCrossRefGoogle Scholar
  145. 145.
    Siqueira JF Jr, Paiva SS, Rôças IN. Reduction in the cultivable bacterial populations in infected root canals by a chlorhexidine-based antimicrobial protocol. J Endod. 2007;33:541–7.PubMedCrossRefGoogle Scholar
  146. 146.
    Neves MA, Rôças IN, Siqueira JF Jr. Clinical antibacterial effectiveness of the self-adjusting file system. Int Endod J. 2014;47:356–65.PubMedCrossRefGoogle Scholar
  147. 147.
    Rôças IN, Lima KC, Siqueira JF Jr. Reduction in bacterial counts in infected root canals after rotary or hand nickel-titanium instrumentation – a clinical study. Int Endod J. 2013;46:681–7.PubMedCrossRefGoogle Scholar
  148. 148.
    Zandi H, Rodrigues RC, Kristoffersen AK, Enersen M, Mdala I, Ørstavik D, et al. Antibacterial effectiveness of 2 root canal irrigants in rootfilled teeth with infection: a randomized clinical trial. J Endod. 2016;42:1307–13.PubMedCrossRefGoogle Scholar
  149. 149.
    Neves MA, Provenzano JC, Rôças IN, Siqueira JF Jr. Clinical antibacterial effectiveness of root canal preparation with reciprocating single-instrument or continuously rotating multi-instrument systems. J Endod. 2016;42:25–9.PubMedCrossRefGoogle Scholar
  150. 150.
    Siqueira JF Jr, Guimarães-Pinto T, Rôças IN. Effects of chemomechanical preparation with 2.5% sodium hypochlorite and intracanal medication with calcium hydroxide on cultivable bacteria in infected root canals. J Endod. 2007;33:800–5.PubMedCrossRefGoogle Scholar
  151. 151.
    Kvist T, Molander A, Dahlen G, Reit C. Microbiological evaluation of one- and two-visit endodontic treatment of teeth with apical periodontitis: a randomized, clinical trial. J Endod. 2004;30:572–6.PubMedCrossRefGoogle Scholar
  152. 152.
    Paquette L, Legner M, Fillery ED, Friedman S. Antibacterial efficacy of chlorhexidine gluconate intracanal medication in vivo. J Endod. 2007;33:788–95.PubMedCrossRefGoogle Scholar
  153. 153.
    Siqueira JF Jr, Magalhães KM, Rôças IN. Bacterial reduction in infected root canals treated with 2.5% NaOCl as an irrigant and calcium hydroxide/camphorated paramonochlorophenol paste as an intracanal dressing. J Endod. 2007;33:667–72.PubMedCrossRefGoogle Scholar
  154. 154.
    Rôças IN, Siqueira JF Jr. In vivo antimicrobial effects of endodontic treatment procedures as assessed by molecular microbiologic techniques. J Endod. 2011;37:304–10.PubMedCrossRefGoogle Scholar
  155. 155.
    Rôças IN, Siqueira JF Jr. Identification of bacteria enduring endodontic treatment procedures by a combined reverse transcriptase-polymerase chain reaction and reverse-capture checkerboard approach. J Endod. 2010;36:45–52.PubMedCrossRefGoogle Scholar
  156. 156.
    Paiva SS, Siqueira JF Jr, Rôças IN, Carmo FL, Ferreira DC, Curvelo JA, et al. Supplementing the antimicrobial effects of chemomechanical debridement with either passive ultrasonic irrigation or a final rinse with chlorhexidine: a clinical study. J Endod. 2012;38:1202–6.PubMedCrossRefGoogle Scholar
  157. 157.
    Huffaker SK, Safavi K, Spångberg LS, Kaufman B. Influence of a passive sonic irrigation system on the elimination of bacteria from root canal systems: a clinical study. J Endod. 2010;36:1315–8.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Siren EK, Haapasalo MP, Waltimo TM, Ørstavik D. In vitro antibacterial effect of calcium hydroxide combined with chlorhexidine or iodine potassium iodide on Enterococcus faecalis. Eur J Oral Sci. 2004;112:326–31.PubMedCrossRefGoogle Scholar
  159. 159.
    Waltimo TM, Ørstavik D, Siren EK, Haapasalo MP. In vitro susceptibility of Candida albicans to four disinfectants and their combinations. Int Endod J. 1999;32:421–9.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Siqueira JF Jr, Araujo MC, Garcia PF, Fraga RC, Dantas CJ. Histological evaluation of the effectiveness of five instrumentation techniques for cleaning the apical third of root canals. J Endod. 1997;23:499–502.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Walton RE. Histologic evaluation of different methods of enlarging the pulp canal space. J Endod. 1976;2:304–11.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Weiger R, ElAyouti A, Lost C. Efficiency of hand and rotary instruments in shaping oval root canals. J Endod. 2002;28:580–3.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Barbizam JV, Fariniuk LF, Marchesan MA, Pécora JD, Sousa-Neto MD. Effectiveness of manual and rotary instrumentation techniques for cleaning flattened root canals. J Endod. 2002;28:365–6.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Elayouti A, Chu AL, Kimionis I, Klein C, Weiger R, Lost C. Efficacy of rotary instruments with greater taper in preparing oval root canals. Int Endod J. 2008;41:1088–92.PubMedCrossRefGoogle Scholar
  165. 165.
    Taha NA, Ozawa T, Messer HH. Comparison of three techniques for preparing oval-shaped root canals. J Endod. 2010;36:532–5.PubMedCrossRefGoogle Scholar
  166. 166.
    De-Deus G, Barino B, Zamolyi RQ, Souza E, Fonseca A Jr, Fidel S, et al. Suboptimal debridement quality produced by the single-file F2 ProTaper technique in oval-shaped canals. J Endod. 2010;36:1897–900.PubMedCrossRefGoogle Scholar
  167. 167.
    Paqué F, Laib A, Gautschi H, Zehnder M. Hard-tissue debris accumulation analysis by high-resolution computed tomography scans. J Endod. 2009;35:1044–7.PubMedCrossRefGoogle Scholar
  168. 168.
    Versiani MA, Alves FR, Andrade-Junior CV, Marceliano-Alves MF, Provenzano JC, Rôças IN, et al. Micro-CT evaluation of the efficacy of hard-tissue removal from the root canal and isthmus area by positive and negative pressure irrigation systems. Int Endod J. 2016;49:1079–87.PubMedCrossRefGoogle Scholar
  169. 169.
    De-Deus G, Marins J, Silva EJ, Souza E, Belladonna FG, Reis C, et al. Accumulated hard tissue debris produced during reciprocating and rotary nickel-titanium canal preparation. J Endod. 2015;41:676–81.PubMedCrossRefGoogle Scholar
  170. 170.
    De-Deus G, Reis C, Beznos D, de Abranches AM, Coutinho-Filho T, Paciornik S. Limited ability of three commonly used thermoplasticized gutta-percha techniques in filling oval-shaped canals. J Endod. 2008;34:1401–5.PubMedCrossRefGoogle Scholar
  171. 171.
    Fabricius L, Dahlén G, Sundqvist G, Happonen RP, Möller AJR. Influence of residual bacteria on periapical tissue healing after chemomechanical treatment and root filling of experimentally infected monkey teeth. Eur J Oral Sci. 2006;114:278–85.PubMedCrossRefGoogle Scholar
  172. 172.
    Waltimo T, Trope M, Haapasalo M, Ørstavik D. Clinical efficacy of treatment procedures in endodontic infection control and one year follow-up of periapical healing. J Endod. 2005;31:863–6.PubMedCrossRefGoogle Scholar
  173. 173.
    Heling B, Shapira J. Roentgenologic and clinical evaluation of endodontically treated teeth with or without negative culture. Quintessence Int. 1978;11:79–84.Google Scholar
  174. 174.
    Engström B, Hard AF, Segerstad L, Ramström G, Frostell G. Correlation of positive cultures with the prognosis for root canal treatment. Odontol Revy. 1964;15:257–70.Google Scholar
  175. 175.
    Siqueira JF Jr, Rôças IN. Optimising single-visit disinfection with supplementary approaches: A quest for predictability. Aust Endod J. 2011;37:92–8.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Metzger Z, Teperovich E, Zary R, Cohen R, Hof R. The Self-adjusting File (SAF). Part 1: respecting the root canal anatomy—a new concept of endodontic files and its implementation. J Endod. 2010;36:679–90.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    De-Deus G, Souza EM, Barino B, Maia J, Zamolyi RQ, Reis C, et al. The Self-adjusting File optimizes debridement quality in oval-shaped root canals. J Endod. 2011;37:701–5.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Siqueira JF Jr, Alves FR, Almeida BM, Machado de Oliveira JC, Rôças IN. Ability of chemomechanical preparation with either rotary instruments or self-adjusting file to disinfect oval-shaped root canals. J Endod. 2010;36:1860–5.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Ribeiro MVM, Silva-Sousa YT, Versiani MA, Lamira A, Steier L, Pécora JD, et al. Comparison of the cleaning efficacy of self-adjusting file and rotary systems in the apical third of oval-shaped canals. J Endod. 2013;39:398–401.CrossRefGoogle Scholar
  180. 180.
    Rodrigues RC, Antunes HS, Neves MA, Siqueira JF Jr, Rôças IN. Infection control in retreatment cases: in vivo antibacterial effects of 2 instrumentation systems. J Endod. 2015;41:1600–5.PubMedCrossRefGoogle Scholar
  181. 181.
    Weller RN, Brady JM, Bernier WE. Efficacy of ultrasonic cleaning. J Endod. 1980;6:740–3.PubMedCrossRefGoogle Scholar
  182. 182.
    van der Sluis LW, Versluis M, Wu MK, Wesselink PR. Passive ultrasonic irrigation of the root canal: a review of the literature. Int Endod J. 2007;40:415–26.PubMedCrossRefGoogle Scholar
  183. 183.
    Martin H. Ultrasonic disinfection of the root canal. Oral Surg Oral Med Oral Pathol. 1976;42:92–9.PubMedCrossRefGoogle Scholar
  184. 184.
    Ahmad M, Pitt Ford TJ, Crum LA. Ultrasonic debridement of root canals: acoustic streaming and its possible role. J Endod. 1987;13:490–9.PubMedCrossRefGoogle Scholar
  185. 185.
    Ahmad M, Pitt Ford TR, Crum LA. Ultrasonic debridement of root canals: an insight into the mechanisms involved. J Endod. 1987;13:93–101.PubMedCrossRefGoogle Scholar
  186. 186.
    Huque J, Kota K, Yamaga M, Iwaku M, Hoshino E. Bacterial eradication from root dentine by ultrasonic irrigation with sodium hypochlorite. Int Endod J. 1998;31:242–50.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Tardivo D, Pommel L, La Scola B, About I, Camps J. Antibacterial efficiency of passive ultrasonic versus sonic irrigation. Ultrasonic root canal irrigation. Odontostomatol Trop. 2010;33:29–35.PubMedPubMedCentralGoogle Scholar
  188. 188.
    Paiva SS, Siqueira JF Jr, Rôças IN, Carmo FL, Leite DC, Ferreira DC, et al. Molecular microbiological evaluation of passive ultrasonic activation as a supplementary disinfecting step: a clinical study. J Endod. 2013;39:190–4.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Liang YH, Jiang LM, Jiang L, Chen XB, Liu YY, Tian FC, et al. Radiographic healing after a root canal treatment performed in single-rooted teeth with and without ultrasonic activation of the irrigant: a randomized controlled trial. J Endod. 2013;39:1218–25.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Pawar R, Alqaied A, Safavi K, Boyko J, Kaufman B. Influence of an apical negative pressure irrigation system on bacterial elimination during endodontic therapy: a prospective randomized clinical study. J Endod. 2012;38:1177–81.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Malkhassian G, Manzur AJ, Legner M, Fillery ED, Manek S, Basrani BR, et al. Antibacterial efficacy of MTAD final rinse and two percent chlorhexidine gel medication in teeth with apical periodontitis: a randomized double-blinded clinical trial. J Endod. 2009;35:1483–90.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Zhao D, Shen Y, Peng B, Haapasalo M. Root canal preparation of mandibular molars with 3 nickel-titanium rotary instruments: a micro-computed tomographic study. J Endod. 2014;40:1860–4.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Alves FR, Andrade-Junior CV, Marceliano-Alves MF, Perez AR, Rôças IN, Versiani MA, et al. Adjunctive steps for disinfection of the mandibular molar root canal system: a correlative bacteriologic, micro-computed tomography, and cryopulverization approach. J Endod. 2016;42:1667–72.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Siqueira JF Jr, Perez AR, Marceliano-Alves MF, Provenzano JC, Monteros SG, Pires FR, et al. What happens to unprepared root canal walls: a correlative analysis using micro-computed tomography and histology/scanning electron microscopy. Int Endod J. 2018;51:501–8.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • José F. SiqueiraJr
    • 1
    Email author
  • Isabela N. Rôças
    • 2
  • Domenico Ricucci
    • 3
  1. 1.Department of Endodontics, Faculty of DentistryEstácio de Sá UniversityRio de JaneiroBrazil
  2. 2.Molecular Microbiology Laboratory, Faculty of DentistryEstácio de Sá UniversityRio de JaneiroBrazil
  3. 3.Private PracticeCetraroItaly

Personalised recommendations