Advertisement

Teaching Computation in 19th-Century Japan: The Transition from Individual Coaching on Traditional Devices at the End of the Edo Period (1600–1868) to Lectures on Western Mathematics During the Meiji Period (1868–1912)

  • Marion CousinEmail author
Chapter
Part of the Mathematics Education in the Digital Era book series (MEDE, volume 11)

Abstract

The revolution that characterized the Meiji era (1868–1912) implied a complete revolution of teaching computation. Traditional individual teaching, based on the manipulations of the abacus and counting rods, had to be replaced by lecture-type teaching based on “paper computation,” imported from the West. In this chapter, I will analyze the evolution of computation teaching during this period of transition, concentrating on the changes and continuities in the use of tools.

Keywords

History of computation History of education Japan Edo period Meiji period 

Bibliography

  1. Chemla, Karine, and Guo, Shuchun. 2004. Les neuf chapitres. Le Classique mathématique de la Chine ancienne et ses commentaries. Paris: Dunod.Google Scholar
  2. Cheng Dawei. 1675. Shinpen chokushi sanpō tōsō 新編直指算法統宗 (New edition of the Suanfa tongzong), 17 volumes, Japan.Google Scholar
  3. Chen, Yifu. 2013. L’étude des différents modes de déplacement des boules du boulier et de l’invention de la méthode de multiplication Kongpan Qianchengfa et son lien avec le calcul mental. Université Paris VII, Ph.D. thesis.Google Scholar
  4. Colburn, Warren. 1825. First lessons in arithmetic, on the plan of Pestalozzi with improvements. Boston: Cummings, Hilliard, and Co.Google Scholar
  5. Cousin, Marion. 2008. Les premiers visages du wasan. Etudes du Jinkôki (1627) de Yoshida Mitsuyoshi et du Jugairoku (1639) d’Imamura Tomoaki. Université Lyon I, Master thesis.Google Scholar
  6. Cousin, Marion. 2013. La “ révolution” de l’enseignement de la géométrie dans le Japon de l’ère Meiji (1868–1912): Une étude de l’évolution des manuels de géométrie élémentaire. Université Lyon I, Ph.D. thesis.Google Scholar
  7. Cousin, Marion. 2017. Sur la création d’une nouvelle langue mathématique japonaise pour l’enseignement de la géométrie élémentaire durant l’ère Meiji (1868–1912). Revue d’histoire des mathématiques, 23(1), 5–70.Google Scholar
  8. Dore, Ronald P. 1965. Education in Tokugawa Japan. New York: Routledge and Kegan Paul.Google Scholar
  9. Duke, Benjamin. 2009. The history of modern Japanese education. Constructing the National School System, 1872–1890. New Bunswick–New Jersey–London: Rutgers University Press.Google Scholar
  10. Elisonas, Jurgis. 1991. Christianity and the daimyo. In The Cambridge history of Japan (Vol. 4: Early Modern Japan, Chap. 7, pp. 301–372). New York: Cambridge University Press.Google Scholar
  11. Fujisawa Rikitarō. 藤沢利喜太郎. 1895. Sanjutsu jōmoku oyobi kyōjuhō 算術条目及教授法 (Syllabus and teaching methods for arithmetics). Tokyo: Fujisawa Rikitarō.Google Scholar
  12. Fujisawa Rikitarō. 藤沢利喜太郎. 1896. Sanjutsu kyōkasho 算術教科書 (Textbook of arithmetic). Tokyo: Dainihon tosho.Google Scholar
  13. Fujisawa Rikitarō. 藤沢利喜太郎. 1900. Shotō daisūgaku kyōkasho 初等代数学教科書 (Textbook of elementary algebra). Tokyo: Dainihon tosho.Google Scholar
  14. Fujisawa Rikitarō. 1912. Summary report on the teaching of mathematics in Japan. Tokyo: Sanshūsha.Google Scholar
  15. Fujitsuka Tadaichi. 藤塚唯一, Itō Yūrin 伊藤有隣. 1880. Shōgaku jinkōki 小学塵劫記 (Jinkōki for elementary schools), Tochigishi: Shūeidō.Google Scholar
  16. Fujiwara Matsusaburō. 藤原松三郎. 1983. Meijizen nihon sūgakushi 明治前日本数学史 (A history of Japanese mathematics prior to Meiji era) (Vol. 1). Tokyo: Nihon Gakushiin.Google Scholar
  17. Galan, Christian. 1998. Le paysage scolaire à la veille de la restauration de Meiji: écoles et manuels. Ebisu, 17, 5–47.CrossRefGoogle Scholar
  18. Galan, Christian. 1999. Les manuels de langue au lendemain de la Restauration de Meiji. Les innovations de la période du décret sur l’éducation. Cipango: Cahiers d’études japonaises, 8, 215–257.Google Scholar
  19. Guo Shuchun (modern Chinese translation), Joseph W. Dauben, and Xu Yibao (English translation). 2013. 九章筭术, Nine chapters on the art of mathematics. A critical edition and English translation (3 Vols.). Shenyang: Liaoning Education Press.Google Scholar
  20. Hasegawa Hiroshi. 長谷川寬. 1830. Sanpō shinsho 算法新書 (New book on mathematics), Tokyo: Sūgaku dōjō zōhan.Google Scholar
  21. Hoe, Jock. 2007. A study by J. Hoe of the fourteenth-century manual on polynomial equations The jade mirror of the four unknowns by Zhu Shijie. Christchurch (New Zealand): Mingming Bookroom.Google Scholar
  22. Horiuchi, Annick. 1994. Les mathématiques japonaises à l’époque d’Edo (1600–1868). Une étude des travaux de Seki Takakazu (?–1708) et de Takebe Katahiro (1664–1739), Paris: Vrin. English edition: Horiuchi, Annick. (2010). Japanese mathematics in the Edo period (1600–1868). A study of the works of Seki Takakazu (?–1708) and Takebe Katahiro (1664–1739) (trans.: S. Wimmer-Zagier). Basel: Birkhäuser.Google Scholar
  23. Horiuchi, Annick. 1996. Sur la recomposition du paysage mathématique japonais au début de l’époque Meiji. In Catherine Goldstein, Jeremy Gray, & Jim Ritter (Eds.), L’Europe mathématique: histoires, mythes, identities (pp. 247–268). Paris: Les editions de la MSH.Google Scholar
  24. Horiuchi, Annick. 2004. Langues mathématiques de Meiji: à la recherche du consensus? In Pascal Crozet & Annick Horiuchi (Eds.), Traduire, transposer, naturaliser: la formation d’une langue scientifique hors des frontières de l’Europe au XIXe siècle (pp. 43–70). Paris: L’Harmattan.Google Scholar
  25. Horiuchi, Annick. 2014. History of mathematics education in Japan. In Alexander Karp & Gert Schubring (Eds.), Handbook on the history of mathematics education (pp. 166–174). New York: Springer.Google Scholar
  26. Jansen, Marius B. 1989. The Meiji restoration. In The Cambridge history of Japan (Vol. 5: The nineteenth century, Chap. 5, pp. 308–366). New York: Cambridge University Press.Google Scholar
  27. Libbrecht, Ulrich. 1973. Chinese mathematics in the thirteenth century: The Shu-shu chiu-chang of Ch’in Chiu-shao [Qin Jiushao]. Cambridge (Mass.)-London: The MIT Press.Google Scholar
  28. Majima, Hideyuki. 真島秀行. 2013. Seki Takakazu, his life and bibliography. In Eberhard Knobloch, Komatsu Hikosaburo & Liu Dun (Eds.), Seki, founder of modern mathematics in Japan: a commemoration on his tercentenary (pp. 3–20). Tokyo & New York: Springer.Google Scholar
  29. Martzloff, Jean-Claude. 2006. A history of Chinese mathematics. Berlin, Heidelberg: Springer.Google Scholar
  30. Matsubara Gen’ichi. 松原元一. 1982. Nihon sūgaku kyōikushi 日本数学教育史 (History of mathematical teaching in Japan) (Vol. 1). Tokyo: Kazama shobō.Google Scholar
  31. Matsubara Gen’ichi. 松原元一. 1983. Nihon sūgaku kyōikushi 日本数学教育史 (History of mathematical teaching in Japan) (Vol. 2). Tokyo: Kazama shobō.Google Scholar
  32. Matsui Koretoshi. 松井惟利. 1872. Seiyō Jinkōki 西洋塵劫記 (Western Jinkōki). Tokyo: Aoyamu seikichi.Google Scholar
  33. Monbushō 文部省 (Ministry of Education). 1907. Shōgaku sanjutsusho. Shuzan. Kyōshiyō. 小学算術書・珠算・教師用 (Book of arithmetic for elementary teaching—(Computation with) the abacus—For the use of teachers). Tokyo: Nihon shoseki.Google Scholar
  34. Momokawa Chihei. 百川治兵衞. 1622. Shokanbumono 諸勘分物 (Estimations of surfaces and volumes), Japan.Google Scholar
  35. Mōri Shigeyoshi. 毛利重能. 1622. Warizansho 割算書 (Book on division). Tokyo: Nihon shuzan renmei.Google Scholar
  36. Neoi Makoto. 根生誠. 1997. Meiji ki chūtō gakkō no sūgaku kyōkasho ni tsuite 「明治期中等学校の数学教科書について」 (On the mathematical textbooks used in the middle schools of the Meiji era). Sūgakushi kenkyū 数学史研究, 152, 26–48.Google Scholar
  37. Numata, Jirō. 1992. Western learning. A short history of the study of western science in early modern Japan. Tokyo: The Japan–Netherlands Institute.Google Scholar
  38. Ogura Kinnosuke. 小倉金之助. 1974. Sūgaku kyōiku no rekishi 「数学教育の歴史」 (History of mathematical education). In Ogura Kinnosuke chosakushū. 小倉金之助著作集 (Selected works of Ogura Kinnosuke.) (Vol. 6). Tokyo: Keisō shobō.Google Scholar
  39. Passin, Herbert. 1965. Society and education in Japan. Tokyo-New York: Kōdansha International.Google Scholar
  40. Rubinger, Richard. 1982. Private academies of Tokugawa Japan. Princeton: Princeton University Press.Google Scholar
  41. Sasaki, Chikara. 1994. The adoption of western mathematics in Meiji Japan. In Chikara Sasaki, Mitsuo Sugiura, & Joseph W. Dauben (Eds.), The intersection of history and mathematics (pp. 165–186). Basel–Boston–Berlin: Birkhäuser Verlag.Google Scholar
  42. Sasaki, Chikara. 1999. The development of mathematical research in twentieth-century Japan. In Chikara Sasaki (Ed.), The introduction of western mathematics in modern Japan: collected papers (pp. 29–44). Tokyo: University of Tokyo.Google Scholar
  43. Sekiguchi, Hiraki. 関口開. 1872. Tenzan mondai shū 点竄問題集 (Collection of questions about the tenzan). Kanazawa: Garyōbō.Google Scholar
  44. Shen, Kangsheng, John N. Crossley, and Anthony W.-C. Lun. 1999. The nine chapters on the mathematical art: Companion and commentary. Oxford–Beijing: Oxford University Press.Google Scholar
  45. Shihan Gakkō (SG). 師範学校 (Normal school, ed.). 1873. Shōgaku sanjutsusho 小学算術書 (Arithmetic book for elementary schools). Tokyo: Monbushō.Google Scholar
  46. Smith, Charles. 1886. Elementary algebra. London: Macmillan and Co.Google Scholar
  47. Takebe Katahiro. 建部賢弘. 1685. Hatsubi sanpō endan genkai 発微算法演段諺解 (Commentaries in vernacular of the endan of the Hatsubi sanpō). Kyoto: Hishiya.Google Scholar
  48. Tsukamoto Neikai. 塚本寧海. 1869. Hissan kunmō 筆算訓蒙 (Introduction to the brush calculation). Numazu: Numazu gakkō.Google Scholar
  49. Ueno, Kenji. 2012. Mathematics teaching before and after the Meiji Restoration. ZDM: The International Journal on Mathematics Education, 44(4): 473–481.CrossRefGoogle Scholar
  50. Wasan Institute (WI). 2000. Jinkōki. (English translation). Tokyo: Tokyo Shoseki Printing Co.Google Scholar
  51. Westney, Eleanor. 1987. Imitation and innovation: The transfer of western organizational patterns to Meiji Japan. Cambridge (Mass.)–London: Harvard University Press.CrossRefGoogle Scholar
  52. Yanagawa Shunsan. 柳河春三. 1857. Yōsan yōhō 洋算用法 (Rules for the use of western computation). Tokyo: YamatoyaGoogle Scholar
  53. Yoshida Mitsuyoshi. 吉田光由. 1641 (first edition: 1627). Jinkōki 塵劫記 (Inalterable treatise). Japan, reproduced in WI (2000).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institut d’Asie Orientale, École normale supérieure de LyonLyonFrance

Personalised recommendations