History of Computations, Computing Devices, and Mathematics Education from the Teaching and Learning Perspective: Looking for New Paths of Investigation

  • Viktor FreimanEmail author
  • Alexei Volkov
Part of the Mathematics Education in the Digital Era book series (MEDE, volume 11)


In this introductory chapter, the editors of the volume discuss the main directions of research on the history of counting instruments and computing devices and of their role in the transmission of mathematics knowledge from antiquity to the mid-twentieth century. They briefly present the issues discussed in the book, as well as in each contribution collected in the volume, and suggest that they can be organized according to the five following axes of research on the history of computing devices: (1) history of development of computational instruments per se and of the related computational practices; (2) transmission of expertise related to the counting skills and counting devices; (3) arithmetical operations performed with the instruments and their optimization; (4) mathematical writing and its interrelationship with computations; (5) role of the instruments in mathematics instruction and possible influence of the teaching practices on development of counting instruments.


History of counting instruments History of computing devices Arithmetical operations and their implementation on computing devices History of mathematics education 


  1. Altiparmak, Kemal. 2016. The teachers views on Soroban abacus training. International Journal of Research in Education and Science (IJRES) 2 (1): 172–178.CrossRefGoogle Scholar
  2. Barnard, Henry. 1906. Pestalozzi and his educational system. Syracuse: Bardeen.Google Scholar
  3. Barner, David, George Alvarez, Jessica Sullivan, Neon Brooks, Mahesh Srinivasan, and Michael C. Frank. 2016. Learning mathematics in a visuospatial format: A randomized, controlled trial of mental abacus instruction. Child Development 87 (4): 1146–1158.CrossRefGoogle Scholar
  4. Bjarnadóttir, Kristín. 2014. History of teaching arithmetic. In Handbook on the history of mathematics education, eds. Alexander Karp and Gert Schubring, 431–458. New York, NY: Springer.Google Scholar
  5. Boggan, Matthew, Sallie Harper, and Anna Whitmire. 2010. Using manipulatives to teach elementary mathematics. Journal of Instructional Pedagogies 3 (1): 1–6. Online version retrieved from on August 7, 2017.
  6. Drijvers, Paul, Michiel Doorman, Peter Boon, Helen Reed, Koeno Gravemeijer. 2010. The teacher and the tool: Instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in Mathematics 75 (2): 213–234.CrossRefGoogle Scholar
  7. Eganyan, Aleksandr M. [Еганян, Александр Меликсетович], and Leonid E. Maĭstrov [Леонид Ефимович Майстров]. 1982. О математических таблицах Анания Ширакаци [O matematicheskikh tablitsakh Ananiya Shirakatsi] (On mathematical tables of Anania Shirakatsi, in Russian). Istoriko-Matematicheskie Issledovaniya 26: 189–197.Google Scholar
  8. Freiman, Viktor, and Alexei Volkov. 2015. Didactical innovations of L.F. Magnitskiĭ: Setting up a research agenda. International Journal for the History of Mathematics Education 10 (1): 1–23.Google Scholar
  9. Gouzévitch, Irina, and Dmitri Gouzévitch. 1998. La guerre, la captivité et les mathématiques. Bulletin de la Sabix 19: 30–68.Google Scholar
  10. Greenwood, Tim. [=Timothy William]. 2011. A reassessment of the life and mathematical problems of Anania Širakac’i. Revue des Études Arméniennes 33: 131–186.Google Scholar
  11. Hewsen, Robert H. 1968. Science in seventh-century Armenia: Ananias of Širak. Isis 59 (1): 32–45.CrossRefGoogle Scholar
  12. Khudson, Kevin. 2017. Use your fingers: The abacus just might improve your arithmetic abilities. Forbes (online edition) article published on April 28, 2016. Retrieved from on August 11, 2017.
  13. Kidwell, Peggy Aldrich, Amy Ackerberg-Hastings, and David Lindsay Roberts. 2008. Tools of American mathematics teaching, 1800–2000. Baltimore: Johns Hopkins University Press.Google Scholar
  14. Knuth, Donald E. 1972. Ancient Babylonian algorithms. Communications of the ACM 15 (7): 671–677.CrossRefGoogle Scholar
  15. Martinovic, Dragana, Viktor Freiman, and Zekeriya Karadag (eds.). 2013. Visual mathematics and cyber learning. (Series Mathematics education in the digital era, vol. 1, series eds. Dragana Martinovic and Viktor Freiman). Dordrecht: Springer + Business Media.Google Scholar
  16. Menninger, Karl. 1969. Number words and number symbols: A cultural history of numbers. Cambridge (MA) & London: MIT Press.Google Scholar
  17. Ministère de l’Éducation et du Développement de la petite enfance (MEDPENB). 2016. Programme d’études: Mathématiques au primaire (1re année). Direction des services pédagogiques. Retrieved from on August 11, 2017.
  18. Monaghan, John, and Luc Trouche. 2016. Mathematics teachers and digital tools. In Monaghan, John, Luc Trouche, and Jonathan M. Borwein. Tools and Mathematics: Instruments for learning. 357–384, Cham: Springer.Google Scholar
  19. Moyer-Packenham, Patricia S. (ed.). 2016. International perspectives on teaching and learning mathematics with virtual manipulatives. (Mathematics education in the digital era, vol. 7, series ed. Dragana Martinovic, and Viktor Freiman). Dordrecht: Springer + Business Media.Google Scholar
  20. Oppenheim, Adolf Leo. 1959. On an operational device in Mesopotamian bureaucracy. Journal of Near Eastern Studies 18 (2): 121–128.CrossRefGoogle Scholar
  21. Orbeli, Iosif Abgarovich [Орбели, Иосиф Абгарович]. 1918. Boпpocы и peшeния вapдaпeтa Aнaнии Шиpaкцa, apмянcкoгo мaтeмaтикa VII вeкa [Voprosy i resheniya vardapeta Ananii Shirkaca, armyanskogo matematika VII veka] (Questions and solutions of vardapet Ananiya of Shirak, an Armenian mathematician of the 7th century; in Russian). Petrograd. [Reprinted in Opбeли И. A. Избpaнныe тpyды. Epeвaн, 1963, 512–531.].Google Scholar
  22. Pape-Carpantier, Marie. 1878. Notice sur l’éducation des sens et quelques instruments pédagogiques. Paris: Delagrave.Google Scholar
  23. Pape-Carpantier, Marie. 1901. Enseignement pratique dans les écoles maternelles (9e édition). Paris: Hachette.Google Scholar
  24. Proust, Christine. 2000. La multiplication babylonienne: la part non écrite du calcul. Revue d’histoire des mathématiques 6: 293–303.Google Scholar
  25. Regnier, Jean-Claude. 2003. Le Boulier-Numérateur de Marie Pape-Carpantier. Bulletin de l’APMEP 447: 457–471.Google Scholar
  26. Ritter, Jim. 2010. Translating rational-practice texts. In Writings of early scholars in the Ancient Near East, Egypt, Rome, and Greece: Translating ancient scientific texts, eds. Annette Imhausen and Tanja Pommerening, 349–383. Berlin/New York: de Gruyter.Google Scholar
  27. Roberts, David Lindsay. 2014. History of tools and technologies in mathematics education. In Handbook on the history of mathematics education, eds. Alexander Karp and Gert Schubring, 565–578. New York, NY: Springer.Google Scholar
  28. Roberts, David Lindsay, Allen Yuk Lun Leung, and Abigail Fregni Lins. 2012. From the slate to the web: Technology in the mathematics curriculum. In Third international handbook of mathematics education, eds. M. A. (Ken) Clements, Alan J. Bishop, Christine Keitel, Jeremy Kilpatrick, Frederick K. S. Leung (Springer international handbooks of education, vol. 27), 525–547. New York: Springer.CrossRefGoogle Scholar
  29. Sachs, Abraham S. 1947. Babylonian mathematical texts I. Reciprocals of regular sexagesimal numbers. Journal of Cuneiform Studies 1 (3): 219–240.CrossRefGoogle Scholar
  30. Simonov, Rem A. [Симонов, Рэм Александрович]. 2001a. Естественнонаучная мысль древней Руси: Избранные труды [Estestvennonauchnaya Mysl’ Drevneĭ Rusi: Izbrannye Trudy] (The Scientific Mentality of Old Russia: Selected Works; in Russian). Moscow: Moscow State University of Printing.Google Scholar
  31. Simonov, Rem A. [Симонов, Рэм Александрович]. 2001b. Древнерусский абак (по данным моделирования основы денежных систем) [Drevnerusskiĭ abak (po dannym modelirovaniya osnovy denezhnykh sistem)] (Ancient Russian abacus (according to the data obtained via emulation of the basis of monetary systems); in Russian), in Simonov 2001a, 29–37.Google Scholar
  32. Simonov, Rem A. [Симонов, Рэм Александрович]. 2001c. Археологическое подтверждение использования на Руси в XI в. архаического абака (“счета костьми”) [Arkheologicheskoe podtverzhdenie ispol’zovaniya na Rusi v XI v. arkhaicheskogo abaka (“scheta kost’mi”)] (Archaeological proof of the use of the archaic abacus (“counting with seeds”) in Russia in the 11th century; in Russian), in Simonov 2001a, 12–29.Google Scholar
  33. Spasskiĭ, Ivan G. [Спасский, Иван Георгиевич]. 1952. Происхождение и история Русских счетов [Proiskhozhdenie i istoriya Russkikh schetov] (Origin and history of the Russian schyoty; in Russian). Istoriko-matematicheskie issledovaniya 5: 269–420.Google Scholar
  34. Szendrei, Julianna. 1996. Concrete materials in the classroom. In International handbook of mathematics education, Part 1, eds. Alan J. Bishop, Ken Clements, Christine Keitel, Jeremy Kilpatrick, Colette Laborde, 411–434. Dordrecht: Springer.Google Scholar
  35. Vasuki, K. [Mathivanan]. 2013. The impact of abacus learning of mental arithmetic on cognitive abilities of children. ALOHA Mental Arithmetic Scientific Report. Retrieved from on August 11, 2017.
  36. Varol, Filiz, and Dale Farran. 2007. Elementary school students mental computation proficiencies. Early Childhood Education Journal 35 (1): 89–94.CrossRefGoogle Scholar
  37. Wilderspin, Samuel. 1840. The infant system, for developing the intellectual and moral powers of all children, from one to seven years of age, 7th revised ed. London: Hodson.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Université de MonctonMonctonCanada
  2. 2.National Tsing-Hua UniversityHsinchuTaiwan

Personalised recommendations