Landslide Susceptibility Prediction Maps: From Blind-Testing to Uncertainty of Class Membership: A Review of Past and Present Developments

  • Andrea G. FabbriEmail author
  • Chang-Jo Chung
Part of the Advances in Natural and Technological Hazards Research book series (NTHR, volume 48)


This contribution reviews the spatial characterization originally stimulated by mineral exploration and later by environmental concern. Research network programmes of the European Commission triggered cross-breeding of disciplines and approaches to hazard prediction in particular for the Deba Valley study area in northern Spain. Examples of results of spatial prediction modelling using blind tests to obtain prediction-rate curves and uncertainty patterns allow considerations on the role of such modelling for research, surveying and civil protection.


Spatial prediction modelling Cross-validation Blind tests Landslide hazard Empirical likelihood ratio Prediction-rate curves Uncertainty of class membership Prediction patterns 



We are grateful to an anonymous reviewer and RAC Garcia who helped in correcting and improving this manuscript.


  1. Agterberg, FP, Chung CF, Fabbri AG, Kelley AM, Springer, JA (1972) Geomathematical evaluation of copper and zinc potential of the Abitibi Area, Ontario and Quebec. Geological Survey of Canada Paper, pp 71–41, 55 pGoogle Scholar
  2. Allais M (1957) Method of appraising economic prospects of mining exploration over large territories. Manage Sci 3:285–347CrossRefGoogle Scholar
  3. Aronoff S (1989) Geographic information systems: a managements perspective. WDL Publications, Ottawa, p 294Google Scholar
  4. Bonachea J (2006) Desarrollo, aplicación y validación de procedimientos y modelos para la evaluación de amenazas, vulnerabilidad y riesgo debidos a procesos geomorfológicos. Ph.D. thesis, Universidad de Cantabria, Santander, Spain, 356 p, July 2006 (
  5. Bonachea J, Bruschi VM, Remondo J, Alberto Gonzalez-Diez A, Salas L, Bertens J, Cendrero A, Otero C, Giusti C, Fabbri A, Gonzalez-Lastra JR, Aramburu JR (2005) An approach for quantifying geomorphological impacts for EIA of transportation infrastructures: a case study in northern Spain. Geomorphology 66:95–117CrossRefGoogle Scholar
  6. Bonham-Carter GG (1994) Geographic Information Systems for Geoscientists. Modelling with GIS. Pergamon (Elsevier Science Ltd.), Tarrytown, New York, 398 pGoogle Scholar
  7. Burrough PA (1986) Principles of geographical information systems for land resources assessment. Clarendon Press, Oxford, p 194Google Scholar
  8. Cendrero A, Frances E, Latrubesse EM, Prado R, Fabbri A, Panizza M., Cantu MP, Hurtado M, Gimenez, JE, Martinez O, Cabral M, Tecchi RA, Hamity V, Ferman JL, Quintana C, Ceccioni A, Recatalá L, Bayer M, Aquino S (2002) Projecto Relesa-Elanem: uma Nova Proposta Metodológica de Índices e Indicadores para Avaliação da Qualidade Ambiental. Revista Brasileira de Geomorfologia, Ano 3(1):33–47Google Scholar
  9. Chung CF (1983) SIMSAG: Integrated computer system for use in evaluation of mineral and energy resources. Math Geol 15:47–58CrossRefGoogle Scholar
  10. Chung CF, Fabbri AG (1993) Representation of geo-science data for information integration. J Non-Renew Res 2(2):122–139Google Scholar
  11. Chung CF, Fabbri AG, Sinding-Larsen R (eds) (1988) Quantitative Analysis of Mineral and Energy resources. D. Reidel, Dordrecht, 738 pGoogle Scholar
  12. Fabbri AG (1975) Design and structure of geological data banks for regional mineral potential evaluation. The Can Min Metall Bull 69:91–98Google Scholar
  13. Fabbri AG (1984) Image Processing of Geological Data. Van Nostrand-Reinhold, New York, p 244Google Scholar
  14. Fabbri AG (2007) On spatial prediction models or the unbearable lightness of GIS. Inaugurele Rede Vrije Universiteit Amsterdam, presented on 17 Apr 2007, 20 p,; see also
  15. Fabbri AG, Cendrero A (1995) Changes and the environment. ITC Journal 4:354–357Google Scholar
  16. Fabbri AG, Chung CF (2008) On blind tests and spatial prediction models. Nat Res Res 17(2):107–118. Also in, Bonham-Carter G, Cheng Q (eds) Progress in geomathematics. Springer, Berlin, Heidelberg, pp 315–332Google Scholar
  17. Fabbri AG, Chung CJ (2009) Training decision-makers in hazard spatial prediction and risk assessment: ideas, tools, strategies and challenges. In: Duncan K, Brebbia CA (eds) Disaster management and human health risk. WIT Press, Southampton, pp 285–296, or WIT Transactions on the Built Environment,, ISSN 1743-3509 (online) doi:10_2495/DMAN09025
  18. Fabbri AG, Chung CJ (2012) A spatial prediction modeling system for mineral potential and natural hazard mapping. Proceedings 7th EUREGEO, Bologna, Italy, 12–15 June 2012, vol. II, pp 756–757Google Scholar
  19. Fabbri AG, Chung C-J (2014) On spatial uncertainty in hazard and risk assessment. In: Brebbia CA (ed) Risk Analysis IX. WIT Press, Southampton, Boston, pp 3–15CrossRefGoogle Scholar
  20. Fabbri AG, Chung C-J (2016) Blind-testing experiments for interpreting spatial-prediction patterns of landslide hazard. Int J Saf Secur Eng 6(2):193–208CrossRefGoogle Scholar
  21. Fabbri AG, Chung CF, Cendrero A, Bauer B (2000) A strategy for sustainable development of natural resources based on prediction models. Proc. ISPRS 2000, Amsterdam, July 2000Google Scholar
  22. Fabbri AG., Gaal G, McCammon RB (eds) (2002a) Deposit and geoenvironmental models for resource exploitation and environmental security. Kluwer Academic Publishers, Dordrecht, 532 p, and a CDGoogle Scholar
  23. Fabbri AG, Chung CF, Napolitano P, Remondo J, Zezere JL (2002b) Prediction rate functions of landslide susceptibility applied in the Iberian Peninsula. In: Brebbia CA (ed) Risk Analysis III. Southampton, Boston, WIT Press, pp 703–718Google Scholar
  24. Fabbri AG, Chung CF, Cendrero A, Remondo J (2003) Is prediction of future landslides possible with a GIS? Nat Hazards 30:487–499CrossRefGoogle Scholar
  25. Fabbri AG, Remondo J, Ballabio C, Poli S, Chung CF, Scholten HJ (2008) Occurrence neighborhoods and risk assessment from landslide hazard in northern Spain. In: Brebbia CA, Beriatos E (eds) Risk analysis VI. Simulation and hazard mitigation. WIT Press, Southampton, Boston, pp 29–41. Also available as WIT Transactions on Information and Communication, v. 39,, ISSN 1743-3517 (online),
  26. Fabbri AG, Remondo J, Chung CJ (2014) Landslide risk assessment with uncertainty of hazard class membership. An application of favourability modeling in the Deba Valley area, northern Spain. Proceedings of IAEG XII Congress, International Association for Engineering Geology, Springer, Turin, Italy, 15–18 Sep 2014. Springer, Lollino G, Giordan D, Crosta GB, Corominas J, Azzam R, Wasowski J, Sciarra N (eds.), Engineering Geology for Society and Territory—Volume 2, Ch. 021, 4 pGoogle Scholar
  27. Felicisimo Á, Cuartero A, Remondo J, Quiros E (2013) Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10(2):175–189CrossRefGoogle Scholar
  28. Melchiorre C, Matteucci M, Remondo J (2006) Artificial neural networks and robustness analysis in landslide hazard zonation. In: The 2006 IEEE international joint conference on Neural Networks Proceedings; 4375–4381, Vancouver, BC, Canada, 16–21 July 2006Google Scholar
  29. Remondo J (2001) Elaboración y validación de mapas de susceptibilidad de deslizeamientos mediante técnicas de análysis espacial. Ph.D. thesis, Universidad de Oviedo, Spain, 404 p, Annexos 95 p, and CDGoogle Scholar
  30. Remondo J, González-Diéz A, Diaz de Teran JR, Cendrero A (2003a) Landslide susceptibility models utilising spatial data analysis techniques. a case study from the lower Deba Valley, Guipúzcoa (Spain). Nat Hazards 30:267–279CrossRefGoogle Scholar
  31. Remondo J, González- A, Diaz de Teran JR, Cendrero A, Fabbri AG, Chung CF (2003b) Validation of landslide susceptibility maps: examples and applications from a case study in Northern Spain. Nat Hazards 30:437–449CrossRefGoogle Scholar
  32. Remondo J, Bonachea J, Cendrero A (2005a) A statistical approach to landslide risk modeling at basin scale: from landslide susceptibility to quantitative risk assessment. Landslides 2(4):321–328CrossRefGoogle Scholar
  33. Remondo J, Soto J, González-Díez A, Díaz de Terín JR, Cendrero A (2005b) Human impact on geomorphic processes and hazards in mountain areas in northern Spain. Geomorphology 66(1–4):69–84CrossRefGoogle Scholar
  34. Remondo J, Bonachea J, Cendrero A (2008) Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology 94(3–4):496–507CrossRefGoogle Scholar
  35. WIT (2012) Scholar
  36. Zêzere JL, Reis E, Garcia R, Oliveira S, Rodriques ML, Vieira G, Ferreira AB (2004) Integration of spatial and temporal data for the definition of different landslide hazard scenarios in the area north of Lisbon (Portugal). Natural Hazards Earth Sys Sci 4:133–146CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.DISATUniversity of Milano-BicoccaMilanItaly
  2. 2.SpatialModels IncOttawaCanada

Personalised recommendations