Advertisement

Evaluation of Sentinel-2 MSI and Pleiades 1B Imagery in Forest Fire Susceptibility Assessment in Temperate Regions of Central and Eastern Europe. A Case Study of Romania

  • Bogdan-Andrei MihaiEmail author
  • Ionuț Săvulescu
  • Marina Vîrghileanu
  • Bogdan Olariu
Chapter
Part of the Advances in Natural and Technological Hazards Research book series (NTHR, volume 48)

Abstract

Romania is a Carpathian country that experiences an increasing number of wildfire events. The production of a reliable model for the zonation of the monthly forest fire susceptibility degrees with a National scale coverage was the target of the SIAFIM project. Our approach is oriented towards the integration of complementary satellite imagery in the evaluation of forest fire susceptibility with the help of data mining techniques. A complex of ground reflectance calibrated spectral data and vegetation radiometric-biophysical indices is produced at two different scales and spectral resolutions from Sentinel-2 MSI multispectral imagery and Pleiades 1B ortho imagery from the month of August, in the region of Domogled-Valea Cernei, south western Romania. The main objective is the production and the evaluation of the representative indices from the available satellite imagery for the mapping of the forested surfaces sensitive to wildfire hazards. The analysis confirmed the reliability of some indices for the assessment of forest fire susceptibility in temperate regions of Central and Eastern Europe: LAI, SAVI, RedNDVI, Cab. Leaf Area Index (LAI) offer interesting information for the selected forest stands, between 0.06 and 0.2: pine stands on limestone steep slopes, Banat black pine stands and beech on shallow soil.

Keywords

Forest fires Forest stands Sentinel-2 MSI Pleiades 1B Biophysical indices Radiometric indices 

Notes

Acknowledgements

The research was done in the framework of SIAFIM project (Satellite Image Analysis for Fire Monitoring), 2012–2015, financed by ROSA-Romanian Space Agency and ESA-European Space Agency.

References

  1. Agapiou A, Alexakis DD, Sarris A, Hadjimitsis DG (2014) Evaluating the potentials of Sentinel-2 for archaeological perspective. Remote Sens-Basel 6(3):2176–2194CrossRefGoogle Scholar
  2. Anderson LO (2012) Biome-scale forest properties in Amazonia based on field and satellite observations. Remote Sens-Basel 4(5):1245–1271CrossRefGoogle Scholar
  3. Angayarkkani K, Radhakrishnan N (2009) Efficient forest fire detection system: a spatial data mining and image processing based approach. Int J Comput Sci Netw Secur 9(3):100–107Google Scholar
  4. Arpaci A, Malowerschnig B, Sass O, Vacik H (2014) Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests. Appl Geogr 53:258–270CrossRefGoogle Scholar
  5. Baret F, Fourty T (1997) Radiometric estimates of nitrogen status of leaves and canopies. In: Diagnosis of the nitrogen status in crops. Springer, Berlin, pp 201–227CrossRefGoogle Scholar
  6. Bowman DM, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP (2009) Fire in the earth system. Science 324(5926):481–484CrossRefGoogle Scholar
  7. Caspard M, Yésou H, Selle A, Tinel C, Tessier P, Durand A, Clandillon S, de Fraipont P (2015) Forest recolonization monitoring based on HR and VHR imagery: the case of the Maido forest fire exploiting Pléiades and spot Kalideos database. Rev Fr Photogram Télédétection 209:149Google Scholar
  8. Cheng T, Wang J (2008) Integrated Spatio-temporal data mining for forest fire prediction. Trans GIS 12(5):591–611CrossRefGoogle Scholar
  9. Chuvieco E (2000) Remote sensing of forest fires—current limitations and future prospects. Observing Land Space: Sci Customers Technol 4:47–51Google Scholar
  10. Chuvieco E, Aguado I, Jurdao S, Pettinari ML, Yebra M, Salas J, Hantson S, de la Riva J, Ibarra P, Rodrigues M (2014) Integrating geospatial information into fire risk assessment. Int J Wildland Fire 23(5):606–619CrossRefGoogle Scholar
  11. Chuvieco E, Aguado I, Yebra M, Nieto H, Salas J, Martín MP, Vilar L, Martínez J, Martín S, Ibarra P (2010) Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Model 221(1):46–58CrossRefGoogle Scholar
  12. Chuvieco E, Cocero D, Riano D, Martin P, Martınez-Vega J, de la Riva J, Perez F (2004) Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens Environ 92(3):322–331CrossRefGoogle Scholar
  13. Clima României (2008) Clima României. Editura Academiei Române, BucureștiGoogle Scholar
  14. Cortez P, Morais AdJR (2007) A data mining approach to predict forest fires using meteorological dataGoogle Scholar
  15. Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ (2001) Climate change and forest disturbances: climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. Bioscience 51(9):723–734CrossRefGoogle Scholar
  16. Datcu M, Daschiel H, Pelizzari A, Quartulli M, Galoppo A, Colapicchioni A, Pastori M, Seidel K, Marchetti PG, d’Elia S (2003) Information mining in remote sensing image archives: system concepts. IEEE Trans Geosci Remote Sens 41(12):2923–2936CrossRefGoogle Scholar
  17. Datcu M, Seidel K (2000) Image information mining: exploration of image content in large archives. In: Aerospace Conference Proceedings, 2000 IEEE, pp 253–264Google Scholar
  18. Delegido J, Verrelst J, Alonso L, Moreno J (2011) Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and Chlorophyll Content. Sens Basel 11(7):7063–7081CrossRefGoogle Scholar
  19. Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, Meygret A, Spoto F, Sy O, Marchese F, Bargellini P (2012) Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ 120:25–36CrossRefGoogle Scholar
  20. Fernandez A, Illera P, Casanova JL (1997) Automatic mapping of surfaces affected by forest fires in Spain using AVHRR NDVI composite image data. Remote Sens Environ 60(2):153–162CrossRefGoogle Scholar
  21. Flannigan MD, Stocks BJ, Wotton BM (2000) Climate change and forest fires. Sci Total Environ 262(3):221–229CrossRefGoogle Scholar
  22. Frampton WJ, Dash J, Watmough G, Milton EJ (2013) Evaluating the capabilities of sentinel-2 for quantitative estimation of biophysical variables in vegetation. Isprs J Photogramm 82:83–92CrossRefGoogle Scholar
  23. Gao B-C (1996) NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58(3):257–266CrossRefGoogle Scholar
  24. Gitelson A, Merzlyak MN (1994) Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J Plant Physiol 143(3):286–292CrossRefGoogle Scholar
  25. Gitelson AA, Kaufman YJ, Merzlyak MN (1996) Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ 58(3):289–298CrossRefGoogle Scholar
  26. Gitelson AA, Merzlyak MN (1998) Remote sensing of chlorophyll concentration in higher plant leaves. Adv Space Res 22(5):689–692CrossRefGoogle Scholar
  27. Han JG, Ryu KH, Chi KH, Yeon YK (2003) Statistics based predictive geo-spatial data mining: Forest fire hazardous area mapping application. Web Technol Appl 2642:370–381CrossRefGoogle Scholar
  28. Hsu W, Lee ML, Zhang J (2002) Image mining: trends and developments. J Intell Inf Syst 19(1):7–23CrossRefGoogle Scholar
  29. Huang Y-L, Devan MN, U’Ren JM, Furr SH, Arnold AE (2016) Pervasive effects of wildfire on foliar endophyte communities in montane forest trees. Microb Ecol 71(2):452–468CrossRefGoogle Scholar
  30. Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309CrossRefGoogle Scholar
  31. Jacquemoud S, Baret F (1990) PROSPECT: a model of leaf optical properties spectra. Remote Sens Environ 34(2):75–91CrossRefGoogle Scholar
  32. Joint Research Center I, Land Management and Natural Hazard Unit (2014) Forest Fire in Europe, Middle East and North Africa 2013. European Commission.  https://doi.org/10.2788/99870
  33. Maffei C, Menenti M (2014) A MODIS-based perpendicular moisture index to retrieve leaf moisture content of forest canopies. Int J Remote Sens 35(5):1829–1845.  https://doi.org/10.1080/01431161.2013.879348CrossRefGoogle Scholar
  34. Main-Knorn M, Pflug B, Debaecker V, Louis J (2015) Calibration and validation plan for the L2A processor and products of the sentinel-2 mission. Int Arch Photogrammetry Remote Sens Spat Inf Sci 40(7):1249CrossRefGoogle Scholar
  35. Majasalmi T, Rautiainen M (2016) The potential of Sentinel-2 data for estimating biophysical variables in a boreal forest: a simulation study. Remote Sens Lett 7(5):427–436CrossRefGoogle Scholar
  36. Matricardi EAT, Skole DL, Pedlowski MA, Chomentowski W, Fernandes LC (2010) Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sens Environ 114(5):1117–1129.  https://doi.org/10.1016/j.rse.2010.01.001CrossRefGoogle Scholar
  37. Maxant J, Proy C, Fontannaz D, Clandillon S, Allenbach B, Yesou H, Battiston S, Uribe C, De Fraipont P (2013) Contribution of Pleiades-HR imagery for disaster damage mapping: initial feedback over Asia, Africa, Europe or the Caribbean. In: Proceedings of 33th EARSeL Symposium Towards HorizonGoogle Scholar
  38. Mazzoni D, Logan JA, Diner D, Kahn R, Tong LL, Li QB (2007) A data-mining approach to associating MISR smoke plume heights with MODIS fire measurements. Remote Sens Environ 107(1–2):138–148CrossRefGoogle Scholar
  39. Mihai B, Săvulescu I (2014) Mapping forest fire susceptibility in temperate mountain areas with submediteranean influences with expert knowledge. A case study from Domogled ridge—Mehedinți Mountains, Southern Carpathians. Paper presented at the S4C (Science for the Carpathians). Forum Carpaticum 2014: Local Responses to Global Challenges, Lviv, UkraineGoogle Scholar
  40. Mithal V, Garg A, Boriah S, Steinbach M, Kumar V, Potter C, Klooster S, Castilla-Rubio JC (2011) Monitoring global forest cover using data mining. ACM Trans Intell Syst Tec 2(4)CrossRefGoogle Scholar
  41. Pătroescu M, Chincea I, Rozylowicz L, Sorescu C, Goia I, Groza G, Frățilă E, Iojă C, Bădescu B, Crișan A, Crăciun N (2007) Forests with Banat black pine (Pinus nigra subsp. banatica) NATURA 2000 site. Editura BRUMAR TimișoaraGoogle Scholar
  42. Pourghasemi HR (2016) GIS-based forest fire susceptibility mapping in Iran: a comparison between evidential belief function and binary logistic regression models. Scand J Forest Res 31(1):80–98CrossRefGoogle Scholar
  43. Pourtaghi ZS, Pourghasemi HR, Aretano R, Semeraro T (2016) Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques. Ecol Indic 64:72–84CrossRefGoogle Scholar
  44. Quintano C, Fernandez-Manso A, Stein A, Bijker W (2011) Estimation of area burned by forest fires in Mediterranean countries: a remote sensing data mining perspective. Forest Ecol Manag 262(8):1597–1607CrossRefGoogle Scholar
  45. Richter K, Hank TB, Vuolo F, Mauser W, D’Urso G (2012) Optimal exploitation of the Sentinel-2 spectral capabilities for crop leaf area index mapping. Remote Sens-Basel 4(3):561–582CrossRefGoogle Scholar
  46. Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. Paper presented at the Third ERTS SymposiumGoogle Scholar
  47. Serbin SP, Ahl DE, Gower ST (2013) Spatial and temporal validation of the MODIS LAI and FPAR products across a boreal forest wildfire chronosequence. Remote Sens Environ 133:71–84.  https://doi.org/10.1016/j.rse.2013.01.022CrossRefGoogle Scholar
  48. Stojanova D, Panov P, Kobler A, Džeroski S, Taškova K (2006) Learning to predict forest fires with different data mining techniques. In: Conference on data mining and data warehouses (SiKDD 2006), Ljubljana, Slovenia, pp 255–258Google Scholar
  49. Tay SC, Hsu W, Lim KH, Yap LC (2003) Spatial data mining: clustering of hot spots and pattern recognition. In: Geoscience and Remote Sensing Symposium, 2003. IGARSS’03. Proceedings. 2003 IEEE International. IEEE, pp 3685–3687Google Scholar
  50. Török-Oance M, Török-Oance R (2002) Considerații asupra propagării și efectelor incendiilor în regiunile montane. Studiu de caz: incendiul din Masivul Domogled (August 2000). Studii și cercetări de Geologie 47:221–232Google Scholar
  51. Umamaheshwaran R, Bijker W, Stein A (2007) Image mining for modeling of forest fires from Meteosat images. IEEE Trans Geosci Remote Sens 45(1):246–253CrossRefGoogle Scholar
  52. Wang D, Wang J, Liang S (2010) Retrieving crop leaf area index by assimilation of MODIS data into a crop growth model. Sci China Earth Sci 53(5):721–730CrossRefGoogle Scholar
  53. Whittaker RH, Niering WA (1975) Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production, and diversity along the elevation gradient. Ecology 56(4):771–790CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bogdan-Andrei Mihai
    • 1
    Email author
  • Ionuț Săvulescu
    • 1
  • Marina Vîrghileanu
    • 1
  • Bogdan Olariu
    • 2
  1. 1.Faculty of GeographyUniversity of BucharestBucharestRomania
  2. 2.Faculty of Geography, Simion Mehedinți Doctoral SchoolUniversity of BucharestBucharestRomania

Personalised recommendations