Heat Shock Protein and Thermal Stress in Chicken

  • Shanmugam MurugesanEmail author
  • Rajkumar Ullengala
  • Vinoth Amirthalingam
Part of the Heat Shock Proteins book series (HESP, volume 12)


Chicken has been selected for higher production performance over the years and are highly sensitive to changes in their environment. The average global temperature has increased over the century and is further expected to rise. In open house rearing system chicken is vulnerable to this increasing environmental temperature and may experience thermal stress. Heat shock proteins (HSP) are highly conserved family of proteins playing important role in normal cellular physiology and cytoprotection against different stressors including heat stress. In chicken levels of different members of HSP family are increased in almost all the tissues in response to heat stress. This increased HSP level protects cellular proteins from heat stress induced damage. Efforts to overcome the heat stress conditions in chicken have lead to development of thermal manipulation protocols whereby epigenetic modifications are introduced. Through epigenetic adaptation the birds acquire protection against the adverse effects of heat stress. This chapter discusses the findings on cellular HSP responses to heat stress and the thermal manipulation strategy to overcome heat stress in chicken.


Chicken Epigenetics Heat stress Heat shock proteins Hsp70 Thermal manipulation 



Carbon dioxide


Heat shock protein


Relative humidity


Thermal manipulation



This work was supported by Indian Council of Agricultural Research under National Initiative on Climate Resilient Agriculture (NICRA) project.


  1. Aengwanich, W., & Simaraks, S. (2004). Pathology of heart, lung, liver and kidney in broilers under chronic heat stress. Songklanakarin. Journal of Science and Technology, 26, 417–424.Google Scholar
  2. Al-Zhgoul, M. B., Dalab, A. E., Ababneh, M. M., Jawasreh, K. I., Al Busadah, K. A., & Ismail, Z. B. (2013). Thermal manipulation during chicken embryogenesis results in enhanced Hsp70 gene expression and the acquisition of thermotolerance. Research in Veterinary Science, 95, 502–507.CrossRefPubMedGoogle Scholar
  3. Ashburner, M., & Bonner, J. J. (1979). The induction of gene activity in drosophila by heat shock. Cell, 17, 241–254.CrossRefPubMedGoogle Scholar
  4. Bakthisaran, R., Tangirala, R., & Rao, C. M. (2015). Small heat shock proteins: Role in cellular functions and pathology. Biochimica et Biophysica Acta – Proteins and Proteomics, 1854, 291–319.CrossRefGoogle Scholar
  5. Charles, D. R. (2002). Responses to the thermal environment. In D. A. Charles & A. W. Walker (Eds.), Poultry environment problems, a guide to solutions (pp. 1–16). Nottingham: Nottingham University Press.Google Scholar
  6. Cheng, C. Y., Tu, W. L., Wang, S. H., Tang, P. C., Chen, C. F., Chen, H.-H., et al. (2015). Annotation of differential gene expression in small yellow follicles of a broiler-type strain of Taiwan country chickens in response to acute heat stress. PLoS One, 10, e0143418.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Csermely, P., Schnaider, T., Soti, C., Prohászka, Z., & Nardai, G. (1998). The 90-kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review. Pharmacology & Therapeutics, 79, 129–168.CrossRefGoogle Scholar
  8. Daghir, N. J. (2008). Poultry production in hot climates (p. 49). Cambridge: CABI.CrossRefGoogle Scholar
  9. Darre, M. J., & Harrison, P. C. (1987). Heart rate, blood pressure, cardiac output, and total peripheral resistance of single comb white leghorn hens during an acute exposure to 35C ambient temperature. Poultry Science, 66, 541–547.CrossRefPubMedGoogle Scholar
  10. De Maio, A., & Vazquez, D. (2013). Extracellular heat shock proteins: A new location, a new function. Extracellular heat shock proteins: A new location, a new function. Shock, 40, 239–246.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Deans, C., & Maggert, K. A. (2015). What do you mean, “epigenetic”? Genetics, 199, 887–896.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dörner, G. (1974). Environment-dependent brain differentiation and fundamental processes of life. Acta Biologica et Medica Germanica, 33, 129–148.PubMedGoogle Scholar
  13. Edington, B. V., & Hightower, L. E. (1990). Induction of a chicken small heat shock (stress) protein: Evidence of multilevel posttranscriptional regulation. Molecular and Cellular Biology, 10, 4886–4898.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gabriel, J. E., Ferro, J. A., Stefani, R. M. P., Ferro, M. I. T., Gomes, S. L., & Macari, M. (1996). Effect of acute heat stress on heat shock protein 70 messenger RNA and on heat shock protein expression in the liver of broilers. British Poultry Science, 37, 443–449.CrossRefPubMedGoogle Scholar
  15. Gabriel, J. E., da Mota, A. F., Boleli, I. C., Macari, M., & Coutinho, L. L. (2002). Effect of moderate and severe heat stress on avian embryonic hsp70 gene expression. Growth, Development, and Aging, 66, 27–33.PubMedGoogle Scholar
  16. Givisiez, P. E., Ferro, J. A., Ferro, M. I., Kronka, S. N., Decuypere, E., & Macari, M. (1999). Hepatic concentration of heat shock protein 70 kD (Hsp70) in broilers subjected to different thermal treatments. British Poultry Science, 40, 292–296.CrossRefPubMedGoogle Scholar
  17. Guerreiro, E. N., Giachetto, P. F., Givisiez, P. E. N., et al. (2004). Brain and hepatic Hsp70 protein levels in heat-acclimated broiler chickens during heat stress. Braz ilian Journal of Poultry Science, 6, 201–206.Google Scholar
  18. Hartl, F. U., & Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 295, 1852–1858.CrossRefPubMedGoogle Scholar
  19. IPCC. (2014). Climate change 2014: Synthesis report. In Core Writing Team, R. K. Pachauri, & L. A. Meyer (Eds.), Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva: IPCC.Google Scholar
  20. Jablonka, E. (2009). Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. The Quarterly Review of Biology, 84, 131–176.CrossRefPubMedGoogle Scholar
  21. Karaca, A. G., Parker, H. M., Yeatman, J. B., & Mcdaniel, C. D. (2002). The effects of heat stress and sperm quality classification on broiler breeder male fertility and semen ion concentrations. British Poultry Science, 43, 621–628.CrossRefPubMedGoogle Scholar
  22. Kelley, P. M., & Schlesinger, M. J. (1978). The effect of amino acid analogues and heat shock on gene expression in chicken embryo fibroblasts. Cell, 15, 1277–1286.CrossRefPubMedGoogle Scholar
  23. Lan, X., Hsieh, J. C. F., Schmidt, C. J., Zhu, Q., & Lamont, S. J. (2016). Liver transcriptome response to hyperthermic stress in three distinct chicken lines. BMC Genomics, 17, 955.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Landry, J., Chrétien, P., Lambert, H., Hickey, E., & Weber, L. A. (1989). Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. The Journal of Cell Biology, 109, 7–15.CrossRefPubMedGoogle Scholar
  25. Lee, D. H. K. (1965). Climatic stress indices for domestic animals. International Journal of Biometeorology, 9, 29–35.CrossRefPubMedGoogle Scholar
  26. Li, C., Guo, S., Zhang, M., Gao, J., & Guo, Y. (2015). DNA methylation and histone modification patterns during the late embryonic and early postnatal development of chickens. Poultry Science, 94, 706–721.CrossRefPubMedGoogle Scholar
  27. Liang, H. M., Lin, D. Y., Hsuuw, Y. D., et al. (2016). Association of heat shock protein 70 gene polymorphisms with acute thermal tolerance, growth, and egg production traits of native chickens in Taiwan. Archives Animal Breeding, 59, 173–181.CrossRefGoogle Scholar
  28. Lindquist, S., & Craig, E. A. (1988). The heat shock proteins. Annual Review of Genetics, 22, 631–677.CrossRefPubMedGoogle Scholar
  29. Luo, Q. B., Song, X. Y., Ji, C. L., Zhang, X. Q., & Zhang, D. X. (2014). Exploring the molecular mechanism of acute heat stress exposure in broiler chickens using gene expression profiling. Gene, 546, 200–205.CrossRefPubMedGoogle Scholar
  30. Maak, S., Melesse, A., Schmidt, R., Schneider, F., & Von Lengerken, G. (2003). Effect of long-term heat exposure on peripheral concentrations of heat shock protein 70 (Hsp70) and hormones in laying hens with different genotypes. British Poultry Science, 44, 133–138.CrossRefPubMedGoogle Scholar
  31. Mahmoud, K. Z., Edens, F. W., Eisen, E. J., & Havenstein, G. B. (2003). Effect of ascorbic acid and acute heat exposure on heat shock protein 70 expression by young white leghorn chickens. Comparative Biochemistry and Physiology, Part C Toxicology and Pharmacology, 136, 329–335.CrossRefGoogle Scholar
  32. Mahmoud, K. Z., Edens, F. W., Eisen, E. J., & Havenstein, G. B. (2004). The effect of dietary phosphorus on heat shock protein mRNAs during acute heat stress in male broiler chickens (Gallus Gallus). Comparative Biochemistry and Physiology, Part C Toxicology and Pharmacology, 137, 11–18.CrossRefGoogle Scholar
  33. Mashaly, M., Hendricks, G. L., Kalama, M. A., Gehad, A. E., Abbas, A. O., & Patterson, P. H. (2004). Effect of heat stress on production parameters and immune response of commercial laying hens. Poultry Science, 83, 889–894.CrossRefPubMedGoogle Scholar
  34. Mezquita, B., Mezquita, C., & Mezquita, J. (1998). Marked differences between avian and mammalian testicular cells in the heat shock induction and polyadenylation of Hsp70 and ubiquitin transcripts. FEBS Letters, 436, 382–386.CrossRefPubMedGoogle Scholar
  35. Mezquita, B., Mezquita, J., Durfort, M., & Mezquita, C. (2001). Constitutive and heat-shock induced expression of Hsp70 mRNA during chicken testicular development and regression. Journal of Cellular Biochemistry, 82, 480–490.CrossRefPubMedGoogle Scholar
  36. Mitchell, B. W., & Siegel, H. S. (1973). Physiological response of chickens to heat stress measured by radio telemetry. Poultry Science, 52, 1111–1119.CrossRefPubMedGoogle Scholar
  37. Mitchell, M.A., Sandercock, D.A., Macleod, M.G. and Hunter, R.R. (2005). Thermoregulatory and metabolic heat production responses during acute heat stress in genetically improved broiler chickens. Proceedings of the International Poultry Scientific Forum (Southern Poultry Science Society) Atlanta, Georgia, USA, p. 110.Google Scholar
  38. Nätt, D., Rubin, C., Wright, D., Johnsson, M., Beltéky, J., Andersson, L., & Jensen, P. (2012). Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens. BMC Genomics, 13, 59.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Padhi, A., Ghaly, M. M., & Ma, L. (2016). Testis-enriched heat shock protein A2 (HSPA2): Adaptive advantages of the birds with internal testes over the mammals with testicular descent. Scientific Reports, 6, 18770.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Parsell, D. A., & Lindquist, S. (1994). Heat shock proteins and stress tolerance. Cold Spring Harbor Monograph Archive, 26, 457–494.Google Scholar
  41. Pasti, C., Gallois-Montbrun, S., Munier-Lehmann, H., Veron, M., Gilles, A., & Deville-Bonne, D. (2003). Reaction of human UMP-CMP kinase with natural and analog substrates. European Journal of Biochemistry, 270, 1784–1790.CrossRefPubMedGoogle Scholar
  42. Quinteiro-Filho, W. M., Ribeiro, A., Ferraz-de-Paula, V., et al. (2010). Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poultry Science, 89, 1905–1914.CrossRefPubMedGoogle Scholar
  43. Rajkumar, U., Reddy, M. R., Rama Rao, S. V., Radhika, K., & Shanmugam, M. (2011). Evaluation of growth, carcass, immune competence, stress parameters in naked neck chicken and their normal siblings under tropical winter and summer temperatures. Asian-Australasian Journal of Animal Sciences, 24, 509–516.CrossRefGoogle Scholar
  44. Rajkumar, U., Vinoth, A., Shanmugam, M., Rajaravindra, K. S., & Rama Rao, S. V. (2015). Effect of embryonic thermal exposure on heat shock proteins (Hsps) gene expression and serum T3 concentration in coloured broiler populations. Animal Biotechnology, 26, 260–267.CrossRefPubMedGoogle Scholar
  45. Rajkumar, U., Vinoth, A., Shanmugam, M., Rajaravindra, K. S., & Rama Rao, S. V. (2017). Effect of increased incubation temperature on Hsp 90 and 60 gene expressions in coloured broiler chickens. Journal of Applied Animal Research, 45, 298–303.CrossRefGoogle Scholar
  46. Ritossa, F. M. (1962). A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia, 18, 571–573.CrossRefGoogle Scholar
  47. Rozenboim, I., Tako, E., Gal-Garber, O., Proudman, J. A., & Uni, Z. (2007). The effect of heat stress on ovarian function of laying hens. Poultry Science, 86, 1760–1765.CrossRefPubMedGoogle Scholar
  48. Settar, P., Yalçin, S., Türkmut, L., Ozkan, S., & Cahanar, A. (1999). Season by genotype interaction related to broiler growth rate and heat tolerance. Poultry Science, 78, 1353–1358.CrossRefPubMedGoogle Scholar
  49. Shanmugam, M., Vinoth, A., Rajaravindra, K. S., & Rajkumar, U. (2015). Thermal manipulation during embryogenesis improves certain semen parameters in layer breeder chicken during hot climatic conditions. Animal Reproduction Science, 161, 112–118.CrossRefPubMedGoogle Scholar
  50. Shevtsov, M., & Multhoff, G. (2016). Heat shock protein-peptide and HSP-based immunotherapies for the treatment of cancer. Frontiers in Immunology, 7, 171.PubMedPubMedCentralGoogle Scholar
  51. Slawinska, A., Hsieh, J. C., Schmidt, C. J., & Lamont, S. J. (2016). Heat stress and lipopolysaccharide stimulation of chicken macrophage-like cell line activates expression of distinct sets of genes. PLoS One, 11, e0164575.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Song, J., Xiao, K., Ke, Y. L., et al. (2014). Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poultry Science, 93, 581–588.CrossRefPubMedGoogle Scholar
  53. Sun, L., Lamont, S. J., Cooksey, A. M., et al. (2015). Transcriptome response to heat stress in a chicken hepatocellular carcinoma cell line. Cell Stress & Chaperones, 20, 939–950.CrossRefGoogle Scholar
  54. Tamzil, M. H., Noor, R. R., Hardjosworo, P. S., Manalu, W., & Sumantri, C. (2013). Acute heat stress responses of three lines of chickens with different heat shock protein (HSP)-70 genotypes. International Journal of Poultry Science, 12, 264–272.CrossRefGoogle Scholar
  55. Triantaphyllopoulos, K. A., Ikonomopoulos, I., & Bannister, A. J. (2016). Epigenetics and inheritance of phenotype variation in livestock. Epigenetics & Chromatin, 9, 31.CrossRefGoogle Scholar
  56. Tu, W. L., Cheng, C. Y., Wang, S. H., et al. (2016). Profiling of differential gene expression in the hypothalamus of broiler-type Taiwan country chickens in response to acute heat stress. Theriogenology, 85, 483–494.CrossRefPubMedGoogle Scholar
  57. Tzschentke, B., & Plagemann, A. (2006). Imprinting and critical periods in early development. World’s Poultry Science Journal, 62, 626–637.CrossRefGoogle Scholar
  58. Varasteh, S., Braber, S., Akbari, P., Garssen, J., & Fink-Gremmels, J. (2015). Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. PLoS One, 10, e0138975.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Velichko, A. K., Markova, E. N., Petrova, N. V., Razin, S. V., & Kantidze, O. L. (2013). Mechanisms of heat shock response in mammals. Cellular and Molecular Life Sciences, 70, 4229–4241.CrossRefPubMedGoogle Scholar
  60. Vinoth, A. (2016). Effect of thermal manipulation on heat shock proteins in chicken-An attempt for epigenetic modulation. Ph.D thesis.Department of Industrial Biotechnology, Bharathidasan University, Tiruchirappalli, India.Google Scholar
  61. Vinoth, A., Thirunalasundari, T., Shanmugam, M., & Rajkumar, U. (2016). Effect of early age thermal conditioning on expression of heat shock proteins in liver tissue and biochemical stress indicators in colored broiler chicken. European Journal of Experimental Biology, 6, 53–63.Google Scholar
  62. Vinoth, A., Thirunalasundari, T., Tharian, J. A., Shanmugam, M., & Rajkumar, U. (2015). Effect of thermal manipulation during embryogenesis on liver heat shock protein expression in chronic heat stressed coloured broiler chickens. Journal of Thermal Biology, 53, 162–171.CrossRefPubMedGoogle Scholar
  63. Waddington, C. H. (1942). The epigenotype. Endeavour, 1, 18–20.Google Scholar
  64. Wang, S., & Edens, F. W. (1998). Heat conditioning induces heat shock proteins in broiler chickens and turkey poults. Poultry Science, 77, 1636–1645.CrossRefPubMedGoogle Scholar
  65. Wang, S. H., Cheng, C. Y., Chen, C. J., et al. (2014). Changes in protein expression in testes of L2 strain Taiwan country chickens in response to acute heat stress. Theriogenology, 82, 80–94.CrossRefPubMedGoogle Scholar
  66. Wang, S. H., Cheng, C. Y., Tang, P. C., et al. (2013). Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress. Theriogenology, 79, 374–382.CrossRefPubMedGoogle Scholar
  67. Wang, S. H., Cheng, C. Y., Tang, P. C., et al. (2015). Acute heat stress induces differential gene expressions in the testes of a broiler-type strain of Taiwan country chickens. PLoS One, 10, e0125816.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wolfenson, D., Frei, Y. F., Snapir, N., & Berman, A. (1981). Heat stress effects on capillary blood flow and its redistribution in the laying hen. Pflügers Archiv, 390, 86–93.CrossRefPubMedGoogle Scholar
  69. Xie, J., Tang, L., Lu, L., et al. (2014). Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus Gallus). PLoS One, 9, e102204.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Xie, J., Tang, L., Lu, L., et al. (2015). Effects of acute and chronic heat stress on plasma metabolites, hormones and oxidant status in restrictedly fed broiler breeders. Poultry Science, 94, 1635–1644.CrossRefPubMedGoogle Scholar
  71. Yahav, S. (2009). Alleviating heat stress in domestic fowl – different strategies. World’s Poultry Science Journal, 65, 719–732.CrossRefGoogle Scholar
  72. Yahav, S. (2015). Regulation of body temperature - strategies and mechanisms. In Sturkie's avian physiology. Edited by Scanes, C. Elsevier Publications, Chapter 37, pp. 869–905.Google Scholar
  73. Yahav, S., Collin, A., Shinder, D., & Picard, M. (2004). Thermal manipulations during broiler chick's embryogenesis - the effect of timing and temperature. Poultry Science, 83, 1959–1963.CrossRefPubMedGoogle Scholar
  74. Yahav, S., Goldfeld, S., Plavnik, I., & Hurwitz, S. (1995). Physiological responses of chickens and turkeys to relative humidity during exposure to high ambient temperature. Journal of Thermal Biologico, 20, 245–253.CrossRefGoogle Scholar
  75. Yahav, S., Shamay, A., Horev, G., Bar-Ilan, D., Genina, O., & Friedman-Einat, M. (1997). Effect of acquisition of improved thermotolerance on the induction of heat shock proteins in broiler chickens. Poultry Science, 76, 1428–1434.CrossRefPubMedGoogle Scholar
  76. Yan, J., Bao, E., & Yu, J. (2009). Heat shock protein 60 expression in heart, liver and kidney of broilers exposed to high temperature. Research in Veterinary Science, 86, 533–538.CrossRefPubMedGoogle Scholar
  77. Yan, Q.C. (2001). Effect of temperature on semen characteristics and sperm heat shock protein 70 in males of Taiwan country chicken. Master thesis. Department of animal science, Taichung: National Chung Hsing UniversityGoogle Scholar
  78. Yu, J., & Bao, E. (2008). Effect of acute heat stress on heat shock protein 70 and its corresponding mrna expression in the heart, liver, and kidney of broilers. Asian-Australas Journal of Animal Science, 21, 1116–1126.CrossRefGoogle Scholar
  79. Yu, J., & Bao, E. (2009). Expression of heat shock protein 90 (Hsp90) and transcription of its corresponding mRNA in broilers exposed to high temperature. British Poultry Science, 50, 504–511.CrossRefPubMedGoogle Scholar
  80. Yu, J., Bao, E., Yan, J., & Lei, L. (2008). Expression and localization of Hsps in the heart and blood vessel of heat-stressed broilers. Cell Stress & Chaperones, 13, 327–335.CrossRefGoogle Scholar
  81. Zhang, W. W., Kong, L. N., Zhang, X. Q., & Luo, Q. B. (2014). Alteration of HSF3 and HSP70 mRNA expression in the tissues of two chicken breeds during acute heat stress. Genetics and Molecular Research, 13, 9787–9794.CrossRefPubMedGoogle Scholar
  82. Zhen, F. S., Du, H. L., Xu, H. P., Luo, Q. B., & Zhang, X. Q. (2006). Tissue and allelic-specific expression of hsp70 gene in chickens: Basal and heat-stress-induced mRNA level quantified with real-time reverse transcriptase polymerase chain reaction. British Poultry Science, 47, 449–455.CrossRefPubMedGoogle Scholar
  83. Zuo, J., Xu, M., Abdullahi, Y. A., Ma, L., Zhang, Z., & Feng, D. (2015). Constant heat stress reduces skeletal muscle protein deposition in broilers. Journal of the Science of Food and Agriculture, 95, 429–436.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Shanmugam Murugesan
    • 1
    Email author
  • Rajkumar Ullengala
    • 1
  • Vinoth Amirthalingam
    • 1
  1. 1.ICAR-Directorate of Poultry ResearchHyderabadIndia

Personalised recommendations