Heat Shock Proteins in Leptospirosis

  • Arada Vinaiphat
  • Visith ThongboonkerdEmail author
Part of the Heat Shock Proteins book series (HESP, volume 12)


Leptospirosis caused by pathogenic Leptospira spirochetes remains an important zoonotic disease worldwide. Like many other dimorphic bacterial pathogens, leptospires have abilities to adapt themselves to survive in a wide range of environmental conditions outside and inside the infected hosts. Recent investigations using genomics and proteomics approaches have revealed that several heat shock proteins (HSP) encoded by the conserved immunodominant antigenic region of Hsp genes among the pathogenic leptospires are associated with their adaption to survive, infectivity and virulence. Understanding how HSP are differentially expressed and regulated during leptospiral infection is thus crucial to develop better serodiagnostic test and vaccine for clinical use. This chapter summarizes the current knowledge of HSP expression and their roles in leptospirosis and also extensively discusses future perspectives of this arena to battle leptospirosis with the ultimate goals for better therapeutic outcome and successful prevention.


Chaperone HSP Immunoproteomics Leptospira Leptospirosis OMPs Proteomics Virulence 



Antigen presenting cells


Heat shock proteins




Microscopic agglutination test


Major histocompatibility complex


Mass spectrometry


Outer-membrane proteins


Small heat shock proteins



This work was supported by Mahidol University research grant and the Thailand Research Fund (IRN60W0004 and IRG5980006).


  1. Adler, B., & de la Pena, M. A. (2010). Leptospira and leptospirosis. Veterinary Microbiology, 140, 287–296.CrossRefPubMedGoogle Scholar
  2. Adler, B., Lo, M., Seemann, T., & Murray, G. L. (2011). Pathogenesis of leptospirosis: The influence of genomics. Veterinary Microbiology, 153, 73–81.CrossRefPubMedGoogle Scholar
  3. Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422, 198–207.CrossRefPubMedGoogle Scholar
  4. Anderton, S. M., van der, Z. R., Prakken, B., Noordzij, A., & van Eden, W. (1995). Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis. The Journal of Experimental Medicine, 181, 943–952.CrossRefPubMedGoogle Scholar
  5. Atzingen, M. V., Rodriguez, D., Siqueira, G. H., Leite, L. C., & Nascimento, A. L. (2014). Induction of boosted immune response in mice by leptospiral surface proteins expressed in fusion with DnaK. BioMed Research International, 2014, 564285.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ballard, S. A., Segers, R. P., Bleumink-Pluym, N., Fyfe, J., Faine, S., & Adler, B. (1993). Molecular analysis of the hsp (groE) operon of Leptospira interrogans serovar copenhageni. Molecular Microbiology, 8, 739–751.CrossRefPubMedGoogle Scholar
  7. Ballard, S. A., Go, M., Segers, R. P., & Adler, B. (1998). Molecular analysis of the dnaK locus of Leptospira interrogans serovar Copenhageni. Gene, 216, 21–29.CrossRefPubMedGoogle Scholar
  8. Barrios, C., Lussow, A. R., Van Embden, J., van der, Z. R., Rappuoli, R., Costantino, P., Louis, J. A., Lambert, P. H., & Del Giudice, G. (1992). Mycobacterial heat-shock proteins as carrier molecules. II: The use of the 70-kDa mycobacterial heat-shock protein as carrier for conjugated vaccines can circumvent the need for adjuvants and Bacillus Calmette Guerin priming. European Journal of Immunology, 22, 1365–1372.CrossRefPubMedGoogle Scholar
  9. Bharti, A. R., Nally, J. E., Ricaldi, J. N., Matthias, M. A., Diaz, M. M., Lovett, M. A., Levett, P. N., Gilman, R. H., Willig, M. R., Gotuzzo, E., et al. (2003). Leptospirosis: A zoonotic disease of global importance. The Lancet Infectious Diseases, 3, 757–771.CrossRefPubMedGoogle Scholar
  10. Bourhy, P., Collet, L., Brisse, S., & Picardeau, M. (2014). Leptospira mayottensis sp. nov., a pathogenic species of the genus Leptospira isolated from humans. International Journal of Systematic and Evolutionary Microbiology, 64, 4061–4067.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Boursaux-Eude, C., Saint, G. I., & Zuerner, R. (1998). Leptospira genomics. Electrophoresis, 19, 589–592.CrossRefPubMedGoogle Scholar
  12. Brandao, A. P., Camargo, E. D., da Silva, E. D., Silva, M. V., & Abrao, R. V. (1998). Macroscopic agglutination test for rapid diagnosis of human leptospirosis. Journal of Clinical Microbiology, 36, 3138–3142.PubMedPubMedCentralGoogle Scholar
  13. Brenner, D. J., Kaufmann, A. F., Sulzer, K. R., Steigerwalt, A. G., Rogers, F. C., & Weyant, R. S. (1999). Further determination of DNA relatedness between serogroups and serovars in the family Leptospiraceae with a proposal for Leptospira alexanderi sp. nov. and four new Leptospira genomospecies. International Journal of Systematic Bacteriology, 49(Pt 2), 839–858.CrossRefPubMedGoogle Scholar
  14. Bulach, D. M., Zuerner, R. L., Wilson, P., Seemann, T., McGrath, A., Cullen, P. A., Davis, J., Johnson, M., Kuczek, E., Alt, D. P., et al. (2006). Genome reduction in Leptospira borgpetersenii reflects limited transmission potential. Proceedings of the National Academy of Sciences of the United States of America, 103, 14560–14565.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cluss, R. G., & Boothby, J. T. (1990). Thermoregulation of protein synthesis in Borrelia burgdorferi. Infection and Immunity, 58, 1038–1042.PubMedPubMedCentralGoogle Scholar
  16. Cox, J., & Mann, M. (2007). Is proteomics the new genomics? Cell, 130, 395–398.CrossRefPubMedGoogle Scholar
  17. Cullen, P. A., Xu, X., Matsunaga, J., Sanchez, Y., Ko, A. I., Haake, D. A., & Adler, B. (2005). Surfaceome of Leptospira spp. Infection and Immunity, 73, 4853–4863.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Eshghi, A., Cullen, P. A., Cowen, L., Zuerner, R. L., & Cameron, C. E. (2009). Global proteome analysis of Leptospira interrogans. Journal of Proteome Research, 8, 4564–4578.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Evangelista, K. V., & Coburn, J. (2010). Leptospira as an emerging pathogen: A review of its biology, pathogenesis and host immune responses. Future Microbiology, 5, 1413–1425.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fouts, D. E., Matthias, M. A., Adhikarla, H., Adler, B., Amorim-Santos, L., Berg, D. E., Bulach, D., Buschiazzo, A., Chang, Y. F., Galloway, R. L., et al. (2016). What makes a bacterial species pathogenic?: Comparative genomic analysis of the genus Leptospira. PLoS Neglected Tropical Diseases, 10, e0004403.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Genevaux, P., Keppel, F., Schwager, F., Langendijk-Genevaux, P. S., Hartl, F. U., & Georgopoulos, C. (2004). In vivo analysis of the overlapping functions of DnaK and trigger factor. EMBO Reports, 5, 195–200.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ghazaei, C. (2017). Role and mechanism of the Hsp70 molecular chaperone machines in bacterial pathogens. Journal of Medical Microbiology, 66, 259–265.CrossRefPubMedGoogle Scholar
  23. Goris, M. G., & Hartskeerl, R. A. (2014). Leptospirosis serodiagnosis by the microscopic agglutination test. Current Protocols in Microbiology, 32, Unit 12E.5.PubMedGoogle Scholar
  24. Guerreiro, H., Croda, J., Flannery, B., Mazel, M., Matsunaga, J., Galvao, R. M., Levett, P. N., Ko, A. I., & Haake, D. A. (2001). Leptospiral proteins recognized during the humoral immune response to leptospirosis in humans. Infection and Immunity, 69, 4958–4968.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Haake, D. A. (2000). Spirochaetal lipoproteins and pathogenesis. Microbiology, 146, 1491–1504.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Haake, D. A., Mazel, M. K., McCoy, A. M., Milward, F., Chao, G., Matsunaga, J., & Wagar, E. A. (1999). Leptospiral outer membrane proteins OmpL1 and LipL41 exhibit synergistic immunoprotection. Infection and Immunity, 67, 6572–6582.PubMedPubMedCentralGoogle Scholar
  27. Huesca, M., Goodwin, A., Bhagwansingh, A., Hoffman, P., & Lingwood, C. A. (1998). Characterization of an acidic-pH-inducible stress protein (hsp70), a putative sulfatide binding adhesin, from Helicobacter pylori. Infection and Immunity, 66, 4061–4067.PubMedPubMedCentralGoogle Scholar
  28. Kiang, J. G., & Tsokos, G. C. (1998). Heat shock protein 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacology & Therapeutics, 80, 183–201.CrossRefGoogle Scholar
  29. Kositanont, U., Saetun, P., Krittanai, C., Doungchawee, G., Tribuddharat, C., & Thongboonkerd, V. (2007). Application of immunoproteomics to leptospirosis: Towards clinical diagnostics and vaccine discovery. Proteomics. Clinical Applications, 1, 400–409.CrossRefPubMedGoogle Scholar
  30. Lane, A. B., & Dore, M. M. (2016). Leptospirosis: A clinical review of evidence based diagnosis, treatment and prevention. World Journal of Clinical Infectious Diseases, 6, 61–66.CrossRefGoogle Scholar
  31. Levett, P. N., & Whittington, C. U. (1998). Evaluation of the indirect hemagglutination assay for diagnosis of acute leptospirosis. Journal of Clinical Microbiology, 36, 11–14.PubMedPubMedCentralGoogle Scholar
  32. Lindquist, S., & Craig, E. A. (1988). The heat-shock proteins. Annual Review of Genetics, 22, 631–677.CrossRefPubMedGoogle Scholar
  33. Lo, M., Cordwell, S. J., Bulach, D. M., & Adler, B. (2009). Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature. PLoS Neglected Tropical Diseases, 3, e560.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Matthias, M. A., & Levett, P. N. (2002). Leptospiral carriage by mice and mongooses on the Island of Barbados. The West Indian Medical Journal, 51, 10–13.PubMedGoogle Scholar
  35. Nakamoto, H., Fujita, K., Ohtaki, A., Watanabe, S., Narumi, S., Maruyama, T., Suenaga, E., Misono, T. S., Kumar, P. K., Goloubinoff, P., et al. (2014). Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins. The Journal of Biological Chemistry, 289, 6110–6119.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nally, J. E., Artiushin, S., & Timoney, J. F. (2001a). Molecular characterization of thermoinduced immunogenic proteins Q1p42 and Hsp15 of Leptospira interrogans. Infection and Immunity, 69, 7616–7624.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nally, J. E., Timoney, J. F., & Stevenson, B. (2001b). Temperature-regulated protein synthesis by Leptospira interrogans. Infection and Immunity, 69, 400–404.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Nascimento, A. L., Ko, A. I., Martins, E. A., Monteiro-Vitorello, C. B., Ho, P. L., Haake, D. A., Verjovski-Almeida, S., Hartskeerl, R. A., Marques, M. V., Oliveira, M. C., et al. (2004). Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. Journal of Bacteriology, 186, 2164–2172.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Natarajaseenivasan, K., Artiushin, S. C., Velineni, S., Vedhagiri, K., Vijayachari, P., & Timoney, J. F. (2011). Surface-associated Hsp60 chaperonin of Leptospira interrogans serovar Autumnalis N2 strain as an immunoreactive protein. European Journal of Clinical Microbiology & Infectious Diseases, 30, 1383–1389.CrossRefGoogle Scholar
  40. Park, S. H., Ahn, B. Y., & Kim, M. J. (1999). Expression and immunologic characterization of recombinant heat shock protein 58 of Leptospira species: A major target antigen of the humoral immune response. DNA and Cell Biology, 18, 903–910.CrossRefPubMedGoogle Scholar
  41. Paster, B. J., Dewhirst, F. E., Weisburg, W. G., Tordoff, L. A., Fraser, G. J., Hespell, R. B., Stanton, T. B., Zablen, L., Mandelco, L., & Woese, C. R. (1991). Phylogenetic analysis of the spirochetes. Journal of Bacteriology, 173, 6101–6109.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Picardeau, M. (2017). Virulence of the zoonotic agent of leptospirosis: Still terra incognita? Nature Reviews. Microbiology, 15, 297–307.CrossRefPubMedGoogle Scholar
  43. Picardeau, M., Bulach, D. M., Bouchier, C., Zuerner, R. L., Zidane, N., Wilson, P. J., Creno, S., Kuczek, E. S., Bommezzadri, S., Davis, J. C., et al. (2008). Genome sequence of the saprophyte Leptospira biflexa provides insights into the evolution of Leptospira and the pathogenesis of leptospirosis. PLoS One, 3, e1607.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Priya, C. G., Bhavani, K., Rathinam, S. R., & Muthukkaruppan, V. R. (2003). Identification and evaluation of LPS antigen for serodiagnosis of uveitis associated with leptospirosis. Journal of Medical Microbiology, 52, 667–673.CrossRefPubMedGoogle Scholar
  45. Qin, J. H., Sheng, Y. Y., Zhang, Z. M., Shi, Y. Z., He, P., Hu, B. Y., Yang, Y., Liu, S. G., Zhao, G. P., & Guo, X. K. (2006). Genome-wide transcriptional analysis of temperature shift in L. interrogans serovar lai strain 56601. BMC Microbiology, 6, 51.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ren, S. X., Fu, G., Jiang, X. G., Zeng, R., Miao, Y. G., Xu, H., Zhang, Y. X., Xiong, H., Lu, G., Lu, L. F., et al. (2003). Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature, 422, 888–893.CrossRefPubMedGoogle Scholar
  47. Riazi, M., Zainul, F. Z., Bahaman, A. R., Amran, F., & Khalilpour, A. (2014). Role of 72 kDa protein of Leptospira interrogans as a diagnostic marker in acute leptospirosis. The Indian Journal of Medical Research, 139, 308–313.PubMedPubMedCentralGoogle Scholar
  48. Saito, M., Villanueva, S. Y., Kawamura, Y., Iida, K., Tomida, J., Kanemaru, T., Kohno, E., Miyahara, S., Umeda, A., Amako, K., et al. (2013). Leptospira idonii sp. nov., isolated from environmental water. International Journal of Systematic and Evolutionary Microbiology, 63, 2457–2462.CrossRefPubMedGoogle Scholar
  49. Sauer, R. T., Bolon, D. N., Burton, B. M., Burton, R. E., Flynn, J. M., Grant, R. A., Hersch, G. L., Joshi, S. A., Kenniston, J. A., Levchenko, I., et al. (2004). Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell, 119, 9–18.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sayyed Mousavi, M. N., Sadeghi, J., Aghazadeh, M., Asgharzadeh, M., & Samadi Kafil, H. (2017). Current advances in urban leptospirosis diagnosis. Reviews in Medical Microbiology, 28, 114–118.CrossRefGoogle Scholar
  51. Sikora, A., & Grzesiuk, E. (2007). Heat shock response in gastrointestinal tract. Journal of Physiology and Pharmacology, 58(Suppl 3), 43–62.PubMedGoogle Scholar
  52. Stamm, L. V., Gherardini, F. C., Parrish, E. A., & Moomaw, C. R. (1991). Heat shock response of spirochetes. Infection and Immunity, 59, 1572–1575.PubMedPubMedCentralGoogle Scholar
  53. Terpstra, W. J. (1992). Typing leptospira from the perspective of a reference laboratory. Acta Leidensia, 60, 79–87.PubMedGoogle Scholar
  54. Thongboonkerd, V. (2008). Proteomics in leptospirosis research: Towards molecular diagnostics and vaccine development. Expert Review of Molecular Diagnostics, 8, 53–61.CrossRefPubMedGoogle Scholar
  55. Thongboonkerd, V., Chiangjong, W., Saetun, P., Sinchaikul, S., Chen, S. T., & Kositanont, U. (2009). Analysis of differential proteomes in pathogenic and non-pathogenic Leptospira: Potential pathogenic and virulence factors. Proteomics, 9, 3522–3534.CrossRefPubMedGoogle Scholar
  56. Tobian, A. A., Canaday, D. H., Boom, W. H., & Harding, C. V. (2004). Bacterial heat shock proteins promote CD91-dependent class I MHC cross-presentation of chaperoned peptide to CD8+ T cells by cytosolic mechanisms in dendritic cells versus vacuolar mechanisms in macrophages. Journal of Immunology, 172, 5277–5286.CrossRefGoogle Scholar
  57. van Eden, W., Koets, A., van Kooten, P., Prakken, B., & van der, Z. R. (2003). Immunopotentiating heat shock proteins: Negotiators between innate danger and control of autoimmunity. Vaccine, 21, 897–901.CrossRefPubMedGoogle Scholar
  58. Winslow, W. E., Merry, D. J., Pirc, M. L., & Devine, P. L. (1997). Evaluation of a commercial enzyme-linked immunosorbent assay for detection of immunoglobulin M antibody in diagnosis of human leptospiral infection. Journal of Clinical Microbiology, 35, 1938–1942.PubMedPubMedCentralGoogle Scholar
  59. Xu, Y., Zhu, Y., Wang, Y., Chang, Y. F., Zhang, Y., Jiang, X., Zhuang, X., Zhu, Y., Zhang, J., Zeng, L., et al. (2016). Whole genome sequencing revealed host adaptation-focused genomic plasticity of pathogenic Leptospira. Scientific Reports, 6, 20020.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Yan, W., Faisal, S. M., McDonough, S. P., Divers, T. J., Barr, S. C., Chang, C. F., Pan, M. J., & Chang, Y. F. (2009). Immunogenicity and protective efficacy of recombinant Leptospira immunoglobulin-like protein B (rLigB) in a hamster challenge model. Microbes and Infection, 11, 230–237.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand

Personalised recommendations