Mitochondria: Where Are They Coming From?

  • Mauro Degli EspostiEmail author


This chapter summarizes the evidence sustaining the concept that mitochondria derive from a particular type of bacteria, the alpha proteobacteria. Once considered a hypothesis, this concept is now a scientific fact and therefore should not be viewed in dubitative terms. What remains uncertain is from which bacterial taxa the proto-mitochondria originated. However, the quest to find the living bacterial relatives of our mitochondria is narrowing to a limited set of alpha proteobacteria with ample metabolic versatility. The results of this quest are likely to throw new light on various aspects of mitochondrial physiology and biochemistry.


Proto-mitochondria Alpha proteobacteria Endo-symbiotic theory Evolution Metabolism 



I thank Esperanza Martinez Romero (E.M.R.) for her support. This work was sponsored in part by CONACyT grants No. 263876 and 253116 to E.M.R.


  1. Atteia A, van Lis R, van Hellemond JJ, Tielens AG, Martin W, Henze K (2004) Identification of prokaryotic homologues indicates an endosymbiotic origin for the alternative oxidases of mitochondria (AOX) and chloroplasts (PTOX). Gene 330:143–148CrossRefPubMedGoogle Scholar
  2. Atteia A, Adrait A, Brugière S, Tardif M, van Lis R, Deusch O, Dagan T, Kuhn L, Gontero B, Martin W, Garin J, Joyard J, Rolland N (2009) A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor. Mol Biol Evol 26(7):1533–1548. CrossRefPubMedGoogle Scholar
  3. Aussel L, Pierrel F, Loiseau L, Lombard M, Fontecave M, Barras F (2014) Biosynthesis and physiology of coenzyme Q in bacteria. Biochim Biophys Acta 1837(7):1004–1011. CrossRefPubMedGoogle Scholar
  4. Burki F (2014) The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol 6:a016147CrossRefPubMedPubMedCentralGoogle Scholar
  5. Degli Esposti M (2014) Bioenergetic evolution in proteobacteria and mitochondria. Genome Biol Evol 6(12):3238–3251. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Degli Esposti M (2016) Late mitochondrial acquisition, really? Genome Biol Evol 8(6):2031–2035. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Degli Esposti M, Martinez Romero E (2016) A survey of the energy metabolism of nodulating symbionts reveals a new form of respiratory complex I. FEMS Microbiol Ecol 92(6):fiw084. CrossRefPubMedGoogle Scholar
  8. Degli Esposti M, Martinez Romero E (2017) The functional microbiome of arthropods. PLoS One 12(5):e0176573. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Degli Esposti M, Cortez D, Lozano L, Rasmussen S, Nielsen HB, Martinez Romero E (2016) Alpha proteobacterial ancestry of the [Fe-Fe]-hydrogenases in anaerobic eukaryotes. Biol Direct 11:34. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gray MW (2015) Mosaic nature of the mitochondrial proteome: implications for the origin and evolution of mitochondria. Proc Natl Acad Sci U S A 112:10133–10138. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hiraishi A, Hoshino Y (1984) Distribution of rhodoquinone in Rhodospirillaceae and its taxonomic implication. J Gen Appl Microbiol 30:435–448CrossRefGoogle Scholar
  12. Kawamukai M (2015) Biosynthesis of coenzyme Q in eukaryotes. Biosci Biotechnol Biochem 80(1):23–33. PubMedGoogle Scholar
  13. Ku C, Nelson-Sathi S, Roettger M, Garg S, Hazkani-Covo E, Martin WF (2015) Endosymbiotic gene transfer from prokaryotic pangenomes: inherited chimerism in eukaryotes. Proc Natl Acad Sci U S A 112(33):10139–10146. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lane N (2006) Power, sex, suicide: mitochondria and the meaning of life. Oxford University Press, OxfordGoogle Scholar
  15. Lane N, Martin W (2010) The energetics of genome complexity. Nature 467(7318):929–934. CrossRefPubMedGoogle Scholar
  16. Lazcano A, Peretó J (2017) On the origin of mitosing cells: a historical appraisal of Lynn Margulis endosymbiotic theory. J Theor Biol 434(17):80–87. CrossRefPubMedGoogle Scholar
  17. Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353(6305):1272–1277. CrossRefPubMedGoogle Scholar
  18. Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AG, Martin WF (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76(2):444–495. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Pelosi L, Ducluzeau AL, Loiseau L, Barras F, Schneider D, Junier I, Pierrel F (2016) Evolution of ubiquinone biosynthesis: multiple proteobacterial enzymes with various regioselectivities to catalyze three contiguous aromatic hydroxylation reactions. mSystems 1(4). pii: e00091-16Google Scholar
  20. Pittis AA, Gabaldón T (2016) Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531:101–104. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Rochette NC, Brochier-Armanet C, Gouy M (2014) Phylogenomic test of the hypotheses for the evolutionary origin of eukaryotes. Mol Biol Evol 31:832–845. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Thiergart T, Landan G, Schenk M, Dagan T, Martin WF (2012) An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biol Evol 4:466–485CrossRefPubMedPubMedCentralGoogle Scholar
  23. Williams KP, Sobral BW, Dickerman AW (2007) A robust species tree for the alphaproteobacteria. J Bacteriol 189:4578–4586CrossRefPubMedPubMedCentralGoogle Scholar
  24. Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci U S A 82(13):4443–4447CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Italian Institute of TechnologyGenoaItaly
  2. 2.Center for Genomic Sciences, UNAM Campus of CuernavacaCuernavacaMexico

Personalised recommendations