CNS Non-invasive Brain Stimulation

  • Mirret M. El-Hagrassy
  • Felipe Jones
  • Gleysson Rosa
  • Felipe Fregni
Chapter

Abstract

Non-invasive brain stimulation (NIBS) refers to brain activity modulation without invasive maneuvers. In this chapter, we discuss the two main NIBS techniques, transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). We explain the basic principles behind these two techniques, and the available data on their safety and effectiveness. We also discuss some of their main clinical applications in the adult and pediatric populations, providing a deeper view of their effects as well as the unique challenges of research in this field.

In the adult subsection, we discuss the use of repetitive TMS (rTMS), deep TMS (DTMS) and tDCS in depression, as well rTMS and tDCS in neuropathic pain. In the pediatric subsection, we discuss the use of tDCS and rTMS in epilepsy and cerebral palsy. We conclude that TMS and tDCS tend to be well tolerated in adult and pediatric populations overall; however, caution should be applied when using rTMS in pediatric populations, where long-term data is limited. NIBS has the potential to safely improve neuroplasticity and to treat multiple neurologic disorders, particularly when added to rehabilitative therapy.

Keywords

Non-invasive brain stimulation Transcranial magnetic stimulation Transcranial direct current stimulation Safety Clinical applications EEG Depression Neuropathic pain Epilepsy Cerebral Palsy 

Abbreviations

ADHD

Attention deficit hyperactivity disorder

AED

Antiepileptic drug

AMPA

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

BCE

Before Common Era

BSD

Brain-scalp distance

CP

Cerebral palsy

CSWSS

Continuous spikes and waves during slow wave sleep

DLPFC

Dorsolateral prefrontal cortex

DTMS

Deep transcranial magnetic stimulation

ECT

Electroconvulsive therapy

EEG

Electroencephalography

EMCS

Epidural motor cortex stimulation

EPC

Epilepsia partialis continua

fMRI

Functional magnetic resonance imaging

GABA

Gamma-aminobutyric acid

HAMD

Hamilton Scale for Depression

HD-tDCS

High-Definition transcranial direct current stimulation

ICI

Intracortical inhibition

LDLPFC

Left dorsolateral prefrontal cortex

LTD

Long-term depression

LTP

Long-term potentiation

M1

Primary motor cortex

MADRS

Montgomery Åsberg Depression Rating Scale

MDD

Major depressive disorder

mGluRs

Metabotropic glutamate receptors

N

Number of subjects in study

NIBS

Non-invasive brain stimulation

NMDA

N-methyl-d-aspartate

NNT

Number needed to treat

NP

Neuropathic pain

PFC

Prefrontal cortex

ppTMS

Paired-pulse transcranial magnetic stimulation

RDLPFC

Right dorsolateral prefrontal cortex

RE

Rasmussen’s encephalitis

rTMS

Repetitive transcranial magnetic stimulation

SI

Spike-index

SPECT

Single-photon emission computed tomography

spTMS

Single-pulse transcranial magnetic stimulation

SUDEP

Sudden unexpected death in epilepsy

tDCS

Transcranial direct current stimulation

TES

Transcranial electric stimulation

TMS

Transcranial magnetic stimulation

VGCC

Voltage-gated calcium channels

Notes

Acknowledgement

The authors would like to acknowledge Anthony T. O’Brien, MD for assistance with references.

References

  1. 1.
    Largus S. De compositionibus medicamentorum. In: Ruello J, editor. De compositionibus medicamentorum. Liber unus. Paris: Wechel; 1529.Google Scholar
  2. 2.
    Pascual-Leone A, Wagner T. A brief summary of the history of noninvasive brain stimulation. Supplementary appendix. Annu Rev Biomed Eng. 2007;9:1–7.  https://doi.org/10.1146/annurev.bioeng.9.06.CrossRefGoogle Scholar
  3. 3.
    Galvani A. De Viribus Electricitatis in Motu Musculari. Bologna; 1791.Google Scholar
  4. 4.
    Galvani A Memorie sull’elettricita’ animale (lettera a L. Spallanzani). Bologna; 1797.Google Scholar
  5. 5.
    Lippold OC, Redfearn JW. Mental changes resulting from the passage of small direct currents through the human brain. Br J Psychiatry. 1964;110:768–72.  https://doi.org/10.1192/bjp.110.469.768.CrossRefPubMedGoogle Scholar
  6. 6.
    Sheffield LJ, Mowbray RM. The effects of polarization on normal subjects. Br J Psychiatry. 1968;114(507):225–32.  https://doi.org/10.1192/bjp.114.507.225.CrossRefPubMedGoogle Scholar
  7. 7.
    Dymond AM, Coger RW, Serafetinides EA. Intracerebral current levels in man during electrosleep therapy. Biol Psychiatry. 1975;10(1):101–4.PubMedGoogle Scholar
  8. 8.
    Hall KM, Hicks RA, Hopkins HK. The effects of low level DC scalp positive and negative current on the performance of various tasks. Br J Psychiatry. 1970;117(541):689–91.  https://doi.org/10.1192/bjp.117.541.689.CrossRefPubMedGoogle Scholar
  9. 9.
    Jaeger D, Elbert T, Lutzenberger W, Birbaumer N.The effects of externally applied transcephalic weak direct currents on lateralization in choice reaction tasks. J Psychophysiol. 1987;1(2):127–33.Google Scholar
  10. 10.
    Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):1899–901. http://www.ncbi.nlm.nih.gov/pubmed/11723286.CrossRefGoogle Scholar
  11. 11.
    Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527 Pt 3:633–9. http://doi.org/PHY_1055 [pii].CrossRefGoogle Scholar
  12. 12.
    Priori A, Berardelli A, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp. Neuroreport. 1998;9(10):2257–60.  https://doi.org/10.1097/00001756-199807130-00020.CrossRefPubMedGoogle Scholar
  13. 13.
    Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.  https://doi.org/10.1016/j.brs.2008.06.004.CrossRefPubMedGoogle Scholar
  14. 14.
    Bickford RG, Freeming BD . Non-invasive magnetic stimulation of the human motor cortex. In: Digest of the 6th international conference of medical electronics in biology and engineering; 1965, p. 112.Google Scholar
  15. 15.
    Epstein CM, Schwartzberg DG, Davey KR, Sudderth DB. Localizing the site of magnetic brain stimulation in humans. Neurology. 1990;40(4):666–70.  https://doi.org/10.1212/WNL.40.4.666.CrossRefPubMedGoogle Scholar
  16. 16.
    Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980;285:22.CrossRefGoogle Scholar
  17. 17.
    Pascual-Leone A, Gates JR, Dhuna A. Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology. 1991;41(5):697–702.  https://doi.org/10.1212/WNL.41.5.697.CrossRefPubMedGoogle Scholar
  18. 18.
    Pascual-Leone A, Valls-Solé J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial stimulation of the human motor cortex. Brain. 1994;117:847–58.CrossRefGoogle Scholar
  19. 19.
    Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD. Stimulation of the human motor cortex through the scalp. Exp Physiol. 1991;76:159–200.CrossRefGoogle Scholar
  20. 20.
    Werhahn KJ, Fong JKY, Meyer BU, Priori A, Rothwell JC, Day BL, Thompson PD. The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseous muscle. Electroencephalogr Clin Neurophysiol. 1994;93(2):138–46.  https://doi.org/10.1016/0168-5597(94)90077-9.CrossRefPubMedGoogle Scholar
  21. 21.
    Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008–39.  https://doi.org/10.1016/j.clinph.2009.08.016.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Roth Y, Zangen A. Protocol for depression treatment utilizing H-coil deep brain stimulation. In: Rotenberg A, Horvath J, Pascual-Leone A, editors. Transcranial magnetic stimulation. Neuromethods, vol. 89. New York: Springer; 2014. p. 313–36. http://link.springer.com/10.1007/978-1-4939- 0879-0_15. [cited 2017 Dec 29].CrossRefGoogle Scholar
  23. 23.
    Faraday M. Experimental researches in electricity. Thirtieth series. Philos Trans R Soc Lond. 1856;3:8–546.  https://doi.org/10.1098/rstl.1856.0011.CrossRefGoogle Scholar
  24. 24.
    Deng Z-D, Lisanby SH, Peterchev AV. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul. 2013;6(1):1–13.  https://doi.org/10.1016/j.brs.2012.02.005.CrossRefPubMedGoogle Scholar
  25. 25.
    Amassian VE, Eberle L, Maccabee PJ, Cracco RQ. Modelling magnetic coil excitation of human cerebral cortex with a peripheral nerve immersed in a brain-shaped volume conductor: the significance of fiber bending in excitation. Electroencephalogr Clin Neurophysiol. 1992;85(5):291–301. http://www.ncbi.nlm.nih.gov/pubmed/1385089.CrossRefGoogle Scholar
  26. 26.
    Roth Y, Amir A, Levkovitz Y, Zangen A. Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils. J Clin Neurophys. 2007;24(1):31–8.  https://doi.org/10.1097/WNP.0b013e31802fa393.CrossRefGoogle Scholar
  27. 27.
    Wagner TA, Zahn M, Grodzinsky AJ, Pascual-Leone A. Three-dimensional head model simulation of transcranial magnetic stimulation. IEEE Trans Biomed Eng. 2004;51(9):1586–98.  https://doi.org/10.1109/TBME.2004.827925.CrossRefPubMedGoogle Scholar
  28. 28.
    Hamada M, Galea JM, Di Lazzaro V, Mazzone P, Ziemann U, Rothwell JC. Two distinct interneuron circuits in human motor cortex are linked to different subsets of physiological and behavioral plasticity. J Neurosci. 2014;34(38):12837–49.  https://doi.org/10.1523/JNEUROSCI.1960-14.2014.CrossRefPubMedGoogle Scholar
  29. 29.
    Mu M, Murphy SC, Palmer LM, Nyffeler T. Transcranial magnetic stimulation (TMS) inhibits cortical dendrites. Elife. 2016;5. pii: e13598.  https://doi.org/10.7554/eLife.13598.
  30. 30.
    Zaghi S, Acar M, Hultgren B, Boggio PS, Fregni F. Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current stimulation. Neuroscientist. 2010;16(3):285–307.  https://doi.org/10.1177/1073858409336227.CrossRefPubMedGoogle Scholar
  31. 31.
    Liebetanz D, Nitsche MA, Tergau F, Paulus W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain. 2002;125(Pt 10):2238–47. http://www.ncbi.nlm.nih.gov/pubmed/12244081.CrossRefGoogle Scholar
  32. 32.
    Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol. 2003;553(Pt 1):293–301.  https://doi.org/10.1113/jphysiol.2003.049916.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Boros K, Poreisz C, Münchau A, Paulus W, Nitsche MA. Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans. Eur J Neurosci. 2008;27(5):1292–300.  https://doi.org/10.1111/j.1460-9568.2008.06090.x.CrossRefPubMedGoogle Scholar
  34. 34.
    Vines BW, Cerruti C, Schlaug G. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects’ non-dominant hand compared to uni-hemisphere stimulation. BMC Neurosci. 2008;9(1):103.  https://doi.org/10.1186/1471-2202-9-103.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ardolino G, Bossi B, Barbieri S, Priori A. Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. J Physiol. 2005;568(Pt 2):653–63.  https://doi.org/10.1113/jphysiol.2005.088310.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kwon YH, Ko M-H, Ahn SH, Kim Y-H, Song JC, Lee C-H, et al. Primary motor cortex activation by transcranial direct current stimulation in the human brain. Neurosci Lett. 2008;435(1):56–9.  https://doi.org/10.1016/j.neulet.2008.02.012.CrossRefPubMedGoogle Scholar
  37. 37.
    Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, Paulus W, et al. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci. 2005;22(2):495–504.  https://doi.org/10.1111/j.1460-9568.2005.04233.x.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Marshall L, Mölle M, Hallschmid M, Born J. Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci. 2004;24(44):9985–92.  https://doi.org/10.1523/JNEUROSCI.2725-04.2004.CrossRefPubMedGoogle Scholar
  39. 39.
    Monte-Silva K, Kuo M-F, Hessenthaler S, Fresnoza S, Liebetanz D, Paulus W, Nitsche MA. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul. 2013;6(3):424–32.  https://doi.org/10.1016/j.brs.2012.04.011.CrossRefPubMedGoogle Scholar
  40. 40.
    Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, Paulus W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol. 2003;114(4):600–4.  https://doi.org/10.1016/S1388-2457(02)00412-1.CrossRefPubMedGoogle Scholar
  41. 41.
    Monte-Silva K, Kuo M-F, Liebetanz D, Paulus W, Nitsche MA. Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS). J Neurophysiol. 2010;103(4):1735–40.  https://doi.org/10.1152/jn.00924.2009.CrossRefPubMedGoogle Scholar
  42. 42.
    Wankerl K, Weise D, Gentner R, Rumpf JJ, Classen J. L-type voltage-gated Ca2+ channels: a single molecular switch for long-term potentiation/long-term depression-like plasticity and activity-dependent metaplasticity in humans. J Neurosci. 2010;30(18):6197–204.  https://doi.org/10.1523/JNEUROSCI.4673-09.2010.CrossRefPubMedGoogle Scholar
  43. 43.
    Furubayashi T, Terao Y, Arai N, Okabe S, Mochizuki H, Hanajima R, et al. Short and long duration transcranial direct current stimulation (tDCS) over the human hand motor area. Exp Brain Res. 2008;185(2):279–86.  https://doi.org/10.1007/s00221-007-1149-z.CrossRefPubMedGoogle Scholar
  44. 44.
    Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2(4):201–7, 207.e1.  https://doi.org/10.1016/j.brs.2009.03.005.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Paulus W. Transcranial electrical stimulation (tES – tDCS; tRNS , tACS ) methods. Neuropsychol Rehabil. 2011;21(5):602–17.  https://doi.org/10.1080/09602011.2011.557292.CrossRefPubMedGoogle Scholar
  46. 46.
    Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-Leone A. Transcranial direct current stimulation: a computer-based human model study. NeuroImage. 2007;35(3):1113–24.  https://doi.org/10.1016/j.neuroimage.2007.01.027.CrossRefPubMedGoogle Scholar
  47. 47.
    Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects. Brain Res Bull. 2007;72(4–6):208–14.CrossRefGoogle Scholar
  48. 48.
    Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 2011;14(8):1133–45.  https://doi.org/10.1017/S1461145710001690.CrossRefPubMedGoogle Scholar
  49. 49.
    Fregni F, Nitsche MA, Loo CK, Brunoni AR, Marangolo P, Leite J, et al. Regulatory considerations for the clinical and research use of transcranial direct current stimulation (tDCS): review and recommendations from an expert panel. Clin Res Regul Aff. 2015;32(1):22–35.  https://doi.org/10.3109/10601333.2015.980944.CrossRefPubMedGoogle Scholar
  50. 50.
    Fregni F, Thome-Souza S, Nitsche MA, Freedman SD, Valente KD, Pascual-Leone A. A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy. Epilepsia. 2006;47(2):335–42.  https://doi.org/10.1111/j.1528-1167.2006.00426.x.CrossRefPubMedGoogle Scholar
  51. 51.
    Muszkat D, Polanczyk GV, Dias TGC, Brunoni AR. Transcranial direct current stimulation in child and adolescent psychiatry. J Child Adolesc Psychopharmacol. 2016;26(7):590–7.  https://doi.org/10.1089/cap.2015.0172.CrossRefPubMedGoogle Scholar
  52. 52.
    Reardon JPO, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z, et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry. 2007;62(11):1208–16.  https://doi.org/10.1016/j.biopsych.2007.01.018.CrossRefGoogle Scholar
  53. 53.
    Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalogr Clin Neurophysiol. 1998;108(1):1–16.  https://doi.org/10.1016/S0168-5597(97)00096-8.CrossRefPubMedGoogle Scholar
  54. 54.
    Machii K, Cohen D, Ramos-Estebanez C, Pascual-Leone A. Safety of rTMS to non-motor cortical areas in healthy participants and patients. Clin Neurophysiol. 2006;117(2):455–71.  https://doi.org/10.1016/j.clinph.2005.10.014.CrossRefPubMedGoogle Scholar
  55. 55.
    Counter SA, Borg E, Lofqvist L, Brismar T. Hearing loss from the acoustic artifact of the coil used in extracranial magnetic stimulation. Neurology. 1990;40(8):1159–62.  https://doi.org/10.1212/WNL.40.8.1159.CrossRefPubMedGoogle Scholar
  56. 56.
    Pascual-Leone A, Cohen LG, Shotland LI, Dang N, Pikus A, Wassermannn EM, et al. No evidence of hearing loss in humans due to transcranial magnetic stimulation. Neurlology. 1992;42:647–51.CrossRefGoogle Scholar
  57. 57.
    Loo C, Sachdev P, Elsayed H, McDarmont B, Mitchell P, Wilkinson M, et al. Effects of a 2- to 4-week course of repetitive transcranial magnetic stimulation (rTMS) on neuropsychologic functioning, electroencephalogram, and auditory threshold in depressed patients. Biol Psychiatry. 2001;49(7):615–23.  https://doi.org/10.1016/S0006-3223(00)00996-3.CrossRefPubMedGoogle Scholar
  58. 58.
    Folmer RL, Carroll JR, Rahim A, Shi Y, Hal Martin W. Effects of repetitive transcranial magnetic stimulation (rTMS) on chronic tinnitus. Acta Otolaryngol Suppl. 2006;(556):96–101.  https://doi.org/10.1080/03655230600895465.CrossRefGoogle Scholar
  59. 59.
    Collado-Corona MA, Mora-Magana I, Cordero GL, Toral-Martinon R, Shkurovich-Zaslavsky M, Ruiz-Garcia M, Gonzalez-Astiazaran A. Transcranial magnetic stimulation and acoustic trauma or hearing loss in children. Neurol Res. 2001;23(4):343–6.  https://doi.org/10.1179/016164101101198532.CrossRefPubMedGoogle Scholar
  60. 60.
    Bae EH, Schrader LM, Machii K, Alonso-Alonso M, Riviello JJ Jr, Pascual-Leone A, Rotenberg A. Safety and tolerability of repetitive transcranial magnetic stimulation in patients with epilepsy: a review of the literature. Epilepsy Behav. 2007;10(4):521–8.CrossRefGoogle Scholar
  61. 61.
    Rossi S, Pasqualetti P, Rossini PM, Feige B, Ulivelli M, Glocker FX, et al. Effects of repetitive transcranial magnetic stimulation on movement-related cortical activity in humans. Cereb Cortex. 2000;10(8):802–8.  https://doi.org/10.1093/cercor/10.8.802.CrossRefPubMedGoogle Scholar
  62. 62.
    Hansenne M, Laloyaux O, Mardaga S, Ansseau M. Impact of low frequency transcranial magnetic stimulation on event-related brain potentials. Biol Psychol. 2004;67(3):331–41. https://doi.org/10.1016/j.biopsycho.2004.01.004.CrossRefPubMedGoogle Scholar
  63. 63.
    Holler I, Siebner HR, Cunnington R, Gerschlager W. 5 Hz repetitive TMS increases anticipatory motor activity in the human cortex. Neurosci Lett. 2006;392(3):221–5.  https://doi.org/10.1016/j.neulet.2005.09.018.CrossRefPubMedGoogle Scholar
  64. 64.
    Loo CK, McFarquhar TF, Mitchell PB. A review of the safety of repetitive transcranial magnetic stimulation as a clinical treatment for depression. Int J Neuropsychopharmacol. 2008;11(1):131–47.  https://doi.org/10.1017/S1461145707007717.CrossRefPubMedGoogle Scholar
  65. 65.
    Zwanzger P, Ella R, Keck ME, Rupprecht R, Padberg F. Occurrence of delusions during repetitive transcranial magnetic stimulation (rTMS) in major depression. Biol Psychiatry. 2002;51(7):602–3. http://doi.org/S0006322301013695 [pii].CrossRefGoogle Scholar
  66. 66.
    Janicak PG, O’Reardon JP, Sampson SM, Husain MM, Lisanby SH, Rado JT, et al. Transcranial magnetic stimulation in the treatment of major depressive disorder: a comprehensive summary of safety experience from acute exposure, extended exposure, and during reintroduction treatment. J Clin Psychiatry. 2008;69(2):222–32. http://doi.org/ej07m03619 [pii].CrossRefGoogle Scholar
  67. 67.
    Xia G, Gajwani P, Muzina DJ, Kemp DE, Gao K, Ganocy SJ, Calabrese JR. Treatment-emergent mania in unipolar and bipolar depression: focus on repetitive transcranial magnetic stimulation. Int J Neuropsychopharmacol. 2008;11(1):119–30.  https://doi.org/10.1017/S1461145707007699.CrossRefPubMedGoogle Scholar
  68. 68.
    McClintock SM, Freitas C, Oberman L, Lisanby SH, Pascual-Leone A. Transcranial magnetic stimulation: a neuroscientific probe of cortical function in schizophrenia. Biol Psychiatry. 2011;70(1):19–27.  https://doi.org/10.1016/j.biopsych.2011.02.031.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Bruckmann S, Hauk D, Roessner V, Resch F, Freitag CM, Kammer T, et al. Cortical inhibition in attention deficit hyperactivity disorder: new insights from the electroencephalographic response to transcranial magnetic stimulation. Brain. 2012;135(Pt 7):2215–30.  https://doi.org/10.1093/brain/aws071.CrossRefPubMedGoogle Scholar
  70. 70.
    Jackson SR, Parkinson A, Manfredi V, Millon G, Hollis C, Jackson GM. Motor excitability is reduced prior to voluntary movements in children and adolescents with Tourette syndrome. J Neuropsychol. 2013;7(1):29–44.  https://doi.org/10.1111/j.1748-6653.2012.02033.x.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Vry J, Linder-Lucht M, Berweck S, Bonati U, Hodapp M, Uhl M, et al. Altered cortical inhibitory function in children with spastic diplegia: a TMS study. Exp Brain Res. 2008;186(4):611–8.  https://doi.org/10.1007/s00221-007-1267-7.CrossRefPubMedGoogle Scholar
  72. 72.
    Garvey MA, Mall V. Transcranial magnetic stimulation in children. Clin Neurophysiol. 2008;119(5):973–84.  https://doi.org/10.1016/j.clinph.2007.11.048.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Benali A, Trippe J, Weiler E, Mix A, Petrasch-Parwez E, Girzalsky W, et al. Theta-burst transcranial magnetic stimulation alters cortical inhibition. J Neurosci. 2011;31(4):1193–203.  https://doi.org/10.1523/JNEUROSCI.1379-10.2011.CrossRefPubMedGoogle Scholar
  74. 74.
    Stagg CJ, Wylezinska M, Matthews PM, Johansen-Berg H, Jezzard P, Rothwell JC, Bestmann S. Neurochemical effects of theta burst stimulation as assessed by magnetic resonance spectroscopy. J Neurophysiol. 2009;101(6):2872–7.  https://doi.org/10.1152/jn.91060.2008.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Horvath JC, Najib U, Press D. Transcranial magnetic stimulation (TMS) clinical applications: therapeutics. 2014.  https://doi.org/10.1007/978-1-4939-0879-0_12.CrossRefGoogle Scholar
  76. 76.
    Burt T, Lisanby SH, Sackeim HA. Neuropsychiatric applications of transcranial magnetic stimulation: a meta analysis. Int J Neuropsychopharmacol. 2002;5(1):73–103.  https://doi.org/10.1017/S1461145702002791.CrossRefPubMedGoogle Scholar
  77. 77.
    Herrmann LL, Ebmeier KP. Factors modifying the efficacy of transcranial magnetic stimulation in the treatment of depression: a review. J Clin Psychiatry. 2006;67(12):1870–6. http://www.ncbi.nlm.nih.gov/pubmed/17194264.CrossRefGoogle Scholar
  78. 78.
    Holtzheimer PE, Russo J, Avery DH. A meta-analysis of repetitive transcranial magnetic stimulation in the treatment of depression. Psychopharmacol Bull. 2001;35(4):149–69. http://www.ncbi.nlm.nih.gov/pubmed/12397863.PubMedGoogle Scholar
  79. 79.
    Martin JLR, Barbanoj MJ, Schlaepfer TE, Thompson E, Pérez V, Kulisevsky J. Repetitive transcranial magnetic stimulation for the treatment of depression. Systematic review and meta-analysis. Br J Psychiatry. 2003;182:480–91. http://www.ncbi.nlm.nih.gov/pubmed/12777338.CrossRefGoogle Scholar
  80. 80.
    McNamara B, Ray JL, Arthurs OJ, Boniface S. Transcranial magnetic stimulation for depression and other psychiatric disorders. Psychol Med. 2001;31(7):1141–6. http://www.ncbi.nlm.nih.gov/pubmed/11681540.CrossRefGoogle Scholar
  81. 81.
    Schutter DJLG. Antidepressant efficacy of high-frequency transcranial magnetic stimulation over the left dorsolateral prefrontal cortex in double-blind sham-controlled designs: a meta-analysis. Psychol Med. 2009;39(1):65–75.  https://doi.org/10.1017/S0033291708003462.CrossRefPubMedGoogle Scholar
  82. 82.
    Slotema CW, Blom JD, Hoek HW, Sommer IEC. Should we expand the toolbox of psychiatric treatment methods to include Repetitive Transcranial Magnetic Stimulation (rTMS)? A meta-analysis of the efficacy of rTMS in psychiatric disorders. J Clin Psychiatry. 2010;71(7):873–84.  https://doi.org/10.4088/JCP.08m04872gre.CrossRefPubMedGoogle Scholar
  83. 83.
    Greden JF. The burden of disease for treatment-resistant depression. J Clin Psychiatry. 2001;62(Suppl 16):26–31. http://www.ncbi.nlm.nih.gov/pubmed/11480881.PubMedGoogle Scholar
  84. 84.
    Horvath JC, Najib U, Press D. Transcranial magnetic stimulation (TMS) clinical applications: therapeutics. In: Rotenberg A, Horvath J, Pascual-Leone A, editors. Transcranial magnetic stimulation. Neuromethods, vol. 89. New York: Springer.  https://doi.org/10.1007/978-1-4939-0879-0_14.
  85. 85.
    George MS, Lisanby SH, Avery D, McDonald WM, Durkalski V, Pavlicova M, et al. Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: a sham-controlled randomized trial. Arch Gen Psychiatry. 2010;67(5):507–16.  https://doi.org/10.1001/archgenpsychiatry.2010.46.CrossRefPubMedGoogle Scholar
  86. 86.
    Rosenberg PB, Mehndiratta RB, Mehndiratta YP, Wamer A, Rosse RB, Balish M. Repetitive transcranial magnetic stimulation treatment of comorbid posttraumatic stress disorder and major depression. J Neuropsychiatry Clin Neurosci. 2002;14(3):270–6.  https://doi.org/10.1176/jnp.14.3.270.CrossRefPubMedGoogle Scholar
  87. 87.
    Levkovitz Y, Isserles M, Padberg F, Lisanby SH, Bystritsky A, Xia G, et al. Efficacy and safety of deep transcranial magnetic stimulation for major depression: a prospective multicenter randomized controlled trial. World Psychiatry. 2015;14(1):64–73.  https://doi.org/10.1002/wps.20199.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Fox MD, Buckner RL, White MP, Greicius MD, Pascual-Leone A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry. 2012;72(7):595–603.  https://doi.org/10.1016/j.biopsych.2012.04.028.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Fox MD, Halko MA, Eldaief MC, Pascual-Leone A. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). NeuroImage. 2012;62(4):2232–43.  https://doi.org/10.1016/j.neuroimage.2012.03.035.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45(5):651–60.  https://doi.org/10.1016/j.neuron.2005.02.014.CrossRefPubMedGoogle Scholar
  91. 91.
    Roth Y, Pell GS, Chistyakov AV, Sinai A, Zangen A, Zaaroor M. Motor cortex activation by H-coil and figure-8 coil at different depths. Combined motor threshold and electric field distribution study. Clin Neurophysiol. 2014;125(2):336–43.  https://doi.org/10.1016/j.clinph.2013.07.013.CrossRefPubMedGoogle Scholar
  92. 92.
    Roth Y, Zangen A, Hallett M. A coil design for transcranial magnetic stimulation of deep brain regions. J Clin Neurophysiol. 2002;19(4):361–70. http://www.ncbi.nlm.nih.gov/pubmed/12436090.CrossRefGoogle Scholar
  93. 93.
    Zangen A, Roth Y, Voller B, Hallett M. Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-coil. Clin Neurophysiol. 2005;116(4):775–9.  https://doi.org/10.1016/j.clinph.2004.11.008.CrossRefPubMedGoogle Scholar
  94. 94.
    Kedzior KK, Gellersen HM, Brachetti AK, Berlim MT. Deep transcranial magnetic stimulation (DTMS) in the treatment of major depression: An exploratory systematic review and meta-analysis. J Affect Disord. 2015;187:73–83.  https://doi.org/10.1016/j.jad.2015.08.033.CrossRefPubMedGoogle Scholar
  95. 95.
    Berlim MT, Van den Eynde F, Tovar-Perdomo S, Chachamovich E, Zangen A, Turecki G. Augmenting antidepressants with deep transcranial magnetic stimulation (DTMS) in treatment-resistant major depression. World J Biol Psychiatry. 2014;15(7):570–8.  https://doi.org/10.3109/15622975.2014.925141.CrossRefPubMedGoogle Scholar
  96. 96.
    Bersani FS, Minichino A, Enticott PG, Mazzarini L, Khan N, Antonacci G, et al. Deep transcranial magnetic stimulation as a treatment for psychiatric disorders: a comprehensive review. Eur Psychiatry. 2013;28(1):30–9.  https://doi.org/10.1016/j.eurpsy.2012.02.006.CrossRefPubMedGoogle Scholar
  97. 97.
    Fournier JC, DeRubeis RJ, Hollon SD, Dimidjian S, Amsterdam JD, Shelton RC, Fawcett J. Antidepressant drug effects and depression severity: a patient-level meta-analysis. JAMA. 2010;303(1):47–53.  https://doi.org/10.1001/jama.2009.1943.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Levkovitz Y, Harel EV, Roth Y, Braw Y, Most D, Katz LN, et al. Deep transcranial magnetic stimulation over the prefrontal cortex: evaluation of antidepressant and cognitive effects in depressive patients. Brain Stimul. 2009;2(4):188–200.  https://doi.org/10.1016/j.brs.2009.08.002.CrossRefPubMedGoogle Scholar
  99. 99.
    Minichino A, Bersani FS, Capra E, Pannese R, Bonanno C, Salviati M, et al. ECT, rTMS, and deepTMS in pharmacoresistant drug-free patients with unipolar depression: a comparative review. Neuropsychiatr Dis Treat. 2012;8:55–64.  https://doi.org/10.2147/NDT.S27025.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Rosenberg O, Isserles M, Levkovitz Y, Kotler M, Zangen A, Dannon PN. Effectiveness of a second deep TMS in depression: a brief report. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(4):1041–4.  https://doi.org/10.1016/j.pnpbp.2011.02.015.CrossRefPubMedGoogle Scholar
  101. 101.
    Palm U, Hasan A, Strube W, Padberg F. tDCS for the treatment of depression: a comprehensive review. Eur Arch Psychiatry Clin Neurosci. 2016;266(8):681–94.  https://doi.org/10.1007/s00406-016-0674-9.CrossRefPubMedGoogle Scholar
  102. 102.
    Boggio PS, Rigonatti SP, Ribeiro RB, Myczkowski ML, Nitsche MA, Pascual-Leone A, Fregni F. A randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation for the treatment of major depression. Int J Neuropsychopharmacol. 2008;11(2):249–54.  https://doi.org/10.1017/S1461145707007833.CrossRefPubMedGoogle Scholar
  103. 103.
    Rigonatti SP, Boggio PS, Myczkowski ML, Otta E, Fiquer JT, Ribeiro RB, et al. Transcranial direct stimulation and fluoxetine for the treatment of depression. Eur Psychiatry. 2008;23(1):74–6.  https://doi.org/10.1016/j.eurpsy.2007.09.006.CrossRefPubMedGoogle Scholar
  104. 104.
    Brunoni AR, Valiengo L, Baccaro A, Zanão TA, de Oliveira JF, Goulart A, et al. The sertraline vs. electrical current therapy for treating depression clinical study: results from a factorial, randomized, controlled trial. JAMA Psychiatry. 2013;70(4):383–91.  https://doi.org/10.1001/2013.jamapsychiatry.32.CrossRefPubMedGoogle Scholar
  105. 105.
    Meron D, Hedger N, Garner M, Baldwin DS. Transcranial direct current stimulation (tDCS) in the treatment of depression: systematic review and meta-analysis of efficacy and tolerability. Neurosci Biobehav Rev. 2015;57:46–62.  https://doi.org/10.1016/j.neubiorev.2015.07.012.CrossRefPubMedGoogle Scholar
  106. 106.
    Martin DM, Alonzo A, Ho K-A, Player M, Mitchell PB, Sachdev P, Loo CK. Continuation transcranial direct current stimulation for the prevention of relapse in major depression. J Affect Disord. 2013;144(3):274–8.  https://doi.org/10.1016/j.jad.2012.10.012.CrossRefPubMedGoogle Scholar
  107. 107.
    Valiengo L, Benseñor IM, Goulart AC, de Oliveira JF, Zanao TA, Boggio PS, et al. The sertraline versus electrical current therapy for treating depression clinical study (select-TDCS): results of the crossover and follow-up phases. Depress Anxiety. 2013;30(7):646–53.  https://doi.org/10.1002/da.22079.CrossRefPubMedGoogle Scholar
  108. 108.
    Dell’Osso B, Oldani L, Camuri G, Dobrea C, Cremaschi L, Benatti B, et al. Augmentative repetitive Transcranial Magnetic Stimulation (rTMS) in the acute treatment of poor responder depressed patients: a comparison study between high and low frequency stimulation. Eur Psychiatry. 2015;30(2):271–6.  https://doi.org/10.1016/j.eurpsy.2014.12.001.CrossRefPubMedGoogle Scholar
  109. 109.
    O’Connell NE, Cossar J, Marston L, Wand BM, Bunce D, Moseley GL, De Souza LH. Rethinking clinical trials of transcranial direct current stimulation: participant and assessor blinding is inadequate at intensities of 2mA. PLoS One. 2012;7(10):e47514.  https://doi.org/10.1371/journal.pone.0047514.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Palm U, Reisinger E, Keeser D, Kuo M-F, Pogarell O, Leicht G, et al. Evaluation of sham transcranial direct current stimulation for randomized, placebo-controlled clinical trials. Brain Stimul. 2013;6(4):690–5.  https://doi.org/10.1016/j.brs.2013.01.005.CrossRefPubMedGoogle Scholar
  111. 111.
    Brunoni AR, Moffa AH, Sampaio-Júnior B, Gálvez V, Loo CK. Treatment-emergent mania/hypomania during antidepressant treatment with transcranial direct current stimulation (tDCS): a systematic review and meta-analysis. Brain Stimul. 2017;10(2):260–2.  https://doi.org/10.1016/j.brs.2016.11.005.CrossRefPubMedGoogle Scholar
  112. 112.
    Nitsche MA, Müller-Dahlhaus F, Paulus W, Ziemann U. The pharmacology of neuroplasticity induced by non-invasive brain stimulation: building models for the clinical use of CNS active drugs. J Physiol. 2012;590(19):4641–62.  https://doi.org/10.1113/jphysiol.2012.232975.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Al-Kaysi AM, Al-Ani A, Loo CK, Breakspear M, Boonstra TW, Al-Kaysi AM, et al. Predicting brain stimulation treatment outcomes of depressed patients through the classification of EEG oscillations. In: Conference proceedings: ... annual international conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual conference; 2016, p. 5266–9.  https://doi.org/10.1109/EMBC.2016.7591915.
  114. 114.
    Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S. Treatment of thalamic pain by chronic motor cortex stimulation. Pacing Clin Electrophysiol. 1991;14(1):131–4.  https://doi.org/10.1111/j.1540-8159.1991.tb04058.x.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S. Chronic motor cortex stimulation for the treatment of central pain. Acta Neurochir Suppl. 1991;52:137–9.CrossRefGoogle Scholar
  116. 116.
    Lefaucheur J-P, Drouot X, Cunin P, Bruckert R, Lepetit H, Creange A, et al. Motor cortex stimulation for the treatment of refractory peripheral neuropathic pain. Brain. 2009;132(Pt 6):1463–71.CrossRefGoogle Scholar
  117. 117.
    Nguyen J-P, Velasco F, Brugieres P, Velasco M, Keravel Y, Boleaga B, et al. Treatment of chronic neuropathic pain by motor cortex stimulation: results of a bicentric controlled crossover trial. Brain Stimul. 2008;1(2):89–96.  https://doi.org/10.1016/j.brs.2008.03.007.CrossRefPubMedGoogle Scholar
  118. 118.
    Velasco F, Argüelles C, Carrillo-Ruiz JD, Castro G, Velasco AL, Jiménez F, Velasco M. Efficacy of motor cortex stimulation in the treatment of neuropathic pain: a randomized double-blind trial. J Neurosurg. 2008;108(4):698–706.CrossRefGoogle Scholar
  119. 119.
    Nizard J, Raoul S, Nguyen J-P, Lefaucheur J-P. Invasive stimulation therapies for the treatment of refractory pain. Discov Med. 2012;14(77):237–46.PubMedGoogle Scholar
  120. 120.
    Nguyen JP, Lefaucheur JP, Raoul S, Roualdes V, Péréon Y, Keravel Y. Motor cortex stimulation for the treatment of neuropathic pain. Neuromodulation. 2009;1:515–26.  https://doi.org/10.1016/B978-0-12-374248-3.00041-0.CrossRefGoogle Scholar
  121. 121.
    Lefaucheur JP, Nguyen JP, Drouot X, Pollin B, Keravel Y, H. A. Chronic pain treated by rTMS of motor cortex. Electroencephalogr Clin Neurophysiol. 1998;107:92.Google Scholar
  122. 122.
    Cahana A, Carota A, Annoni JM. The long-term effect of repeated intravenous lidocaine on central pain and possible correlation in positron emission tomography measurements. Anesth Analg. 2004;98(6):1581–4.  https://doi.org/10.1213/01.ANE.0000113258.31039.C8.CrossRefPubMedGoogle Scholar
  123. 123.
    De Salles AAF, Bittar GT. Thalamic pain syndrome: anatomic and metabolic correlation. Surg Neurol. 1994;41(2):147–51.  https://doi.org/10.1016/0090-3019(94)90113-9.CrossRefPubMedGoogle Scholar
  124. 124.
    Di Piero V, Jones AKP, Iannotti F, Powell M, Perani D, Lenzi GL, Frackowiak RSJ. Chronic pain: a PET study of the central effects of percutaneous high cervical cordotomy. Pain. 1991;46(1):9–12.  https://doi.org/10.1016/0304-3959(91)90026-T.CrossRefPubMedGoogle Scholar
  125. 125.
    Garcia-Larrea L, Maarrawi J, Peyron R, Costes N, Mertens P, Magnin M, Laurent B. On the relation between sensory deafferentation, pain and thalamic activity in Wallenberg’s syndrome: a PET-scan study before and after motor cortex stimulation. Eur J Pain. 2006;10(8):677–88.  https://doi.org/10.1016/j.ejpain.2005.10.008.CrossRefPubMedGoogle Scholar
  126. 126.
    Henderson LA, Peck CC, Petersen ET, Rae CD, Youssef AM, Reeves JM, et al. Chronic pain: lost inhibition? J Neurosci. 2013;33(17):7574–82.  https://doi.org/10.1523/JNEUROSCI.0174-13.2013.CrossRefPubMedGoogle Scholar
  127. 127.
    Hirato M, Horikoshi S, Kawashima Y, Satake K, Shibasaki T, Ohye C. The possible role of the cerebral cortex adjacent to the central sulcus for the genesis of central (thalamic) pain—a metabolic study. Acta Neurochir Suppl. 1993;58:141–4.PubMedGoogle Scholar
  128. 128.
    Hirato M, Kawashima Y, Shibazaki T, Shibasaki T, Ohye C. Pathophysiology of central (thalamic) pain: a possible role of the intralaminar nuclei in superficial pain. Acta Neurochir Suppl. 1991;52:133–6.CrossRefGoogle Scholar
  129. 129.
    Baliki MN, Apkarian AV. Nociception, pain, negative moods, and behavior selection. Neuron. 2015;87(3):474–91.  https://doi.org/10.1016/j.neuron.2015.06.005.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Gustin SM, Wrigley PJ, Siddall PJ, Henderson LA. Brain anatomy changes associated with persistent neuropathic pain following spinal cord injury. Cereb Cortex. 2010;20(6):1409–19.  https://doi.org/10.1093/cercor/bhp205.CrossRefPubMedGoogle Scholar
  131. 131.
    Pattany PM, Yezierski RP, Widerstrom-Noga EG, Bowen BC, Martinez-Arizala A, Garcia BR, Quencer RM. Proton magnetic resonance spectroscopy of the thalamus in patients with chronic neuropathic pain after spinal cord injury. AJNR Am J Neuroradiol. 2002;23(6):901–5.PubMedGoogle Scholar
  132. 132.
    Ngernyam N, Jensen MP, Arayawichanon P, Auvichayapat N, Tiamkao S, Janjarasjitt S, et al. The effects of transcranial direct current stimulation in patients with neuropathic pain from spinal cord injury. Clin Neurophysiol. 2015;126(2):382–90.  https://doi.org/10.1016/j.clinph.2014.05.034.CrossRefPubMedGoogle Scholar
  133. 133.
    Sarnthein J, Jeanmonod. High thalamocortical theta coherence in patients with neurogenic pain. NeuroImage. 2008;39(4):1910–7.CrossRefGoogle Scholar
  134. 134.
    Llinás RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A.1999;96(26):15222–7.  https://doi.org/10.1073/pnas.96.26.15222.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Geha PY, Baliki MN, Harden RN, Bauer WR, Parrish TB, Apkarian AV. The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. Neuron. 2008;60(4):570–81.  https://doi.org/10.1016/j.neuron.2008.08.022.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Kucyi A, Moayedi M, Weissman-Fogel I, Goldberg MB, Freeman BV, Tenenbaum HC, Davis KD. Enhanced medial prefrontal-default mode network functional connectivity in chronic pain and its association with pain rumination. J Neurosci. 2014;34(11):3969–75.  https://doi.org/10.1523/JNEUROSCI.5055-13.2014.CrossRefPubMedGoogle Scholar
  137. 137.
    Hashmi JA, Baliki MN, Huang L, Baria AT, Torbey S, Hermann KM, et al. Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain. 2013;136(Pt 9):2751–68.  https://doi.org/10.1093/brain/awt211.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    André-Obadia N, Mertens P, Gueguen A, Peyron R, Garcia-Larrea L. Pain relief by rTMS: differential effect of current flow but no specific action on pain subtypes. Neurology. 2008;71(11):833–40.  https://doi.org/10.1212/01.wnl.0000325481.61471.f0.CrossRefPubMedGoogle Scholar
  139. 139.
    Goto T, Saitoh Y, Hashimoto N, Hirata M, Kishima H, Oshino S, et al. Diffusion tensor fiber tracking in patients with central post-stroke pain; correlation with efficacy of repetitive transcranial magnetic stimulation. Pain. 2008;140(3):509–18.  https://doi.org/10.1016/j.pain.2008.10.009.CrossRefPubMedGoogle Scholar
  140. 140.
    Lefaucheur J-P, Drouot X, Menard-Lefaucheur I, Zerah F, Bendib B, Cesaro P, et al. Neurogenic pain relief by repetitive transcranial magnetic cortical stimulation depends on the origin and the site of pain. J Neurol Neurosurg Psychiatry. 2004;75(4):612–6.  https://doi.org/10.1136/jnnp.2003.022236.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Lefaucheur J-P, Drouot X, Ménard-Lefaucheur I, Keravel Y, Nguyen J-P. Motor cortex rTMS in chronic neuropathic pain: pain relief is associated with thermal sensory perception improvement. J Neurol Neurosurg Psychiatry. 2008;79(9):1044–9.  https://doi.org/10.1136/jnnp.2007.135327.CrossRefPubMedGoogle Scholar
  142. 142.
    Lefaucheur JP, Holsheimer J, Goujon C, Keravel Y, Nguyen JP. Descending volleys generated by efficacious epidural motor cortex stimulation in patients with chronic neuropathic pain. Exp Neurol. 2010;223(2):609–14.CrossRefGoogle Scholar
  143. 143.
    Ahmed MA, Mohamed SA, Sayed D. Long-term antalgic effects of repetitive transcranial magnetic stimulation of motor cortex and serum beta-endorphin in patients with phantom pain. Neurol Res. 2011;33(9):953–8.  https://doi.org/10.1179/1743132811Y.0000000045.CrossRefPubMedGoogle Scholar
  144. 144.
    Tamura Y, Okabe S, Ohnishi T, Saito DN, Arai N. Effects of 1-Hz repetitive transcranial magnetic stimulation on acute pain induced by capsaicin. Prog Brain Res. 2004;107:107–15.  https://doi.org/10.1016/j.pain.2003.10.011.CrossRefGoogle Scholar
  145. 145.
    Taylor JJ, Borckardt JJ, Canterberry M, Li X, Hanlon CA, Brown TR, George MS. Naloxone-reversible modulation of pain circuitry by left prefrontal rTMS. Neuropsychopharmacology. 2013;38(7):1189–97.  https://doi.org/10.1038/npp.2013.13.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Taylor JJ, Borckardt JJ, George MS. Endogenous opioids mediate left dorsolateral prefrontal cortex rTMS-induced analgesia. Pain. 2012;153(6):1219–25.  https://doi.org/10.1016/j.pain.2012.02.030.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Fierro B, De TM, Giglia F, Giglia G, Palermo A, Brighina F. Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex (DLPFC) during capsaicin-induced pain: modulatory effects on motor cortex excitability. Exp Brain Res. 2010;203(1):31–8.CrossRefGoogle Scholar
  148. 148.
    Lefaucheur JP, Ayache SS, Sorel M, Farhat WH, Zouari HG, Ciampi De Andrade D, et al. Analgesic effects of repetitive transcranial magnetic stimulation of the motor cortex in neuropathic pain: influence of theta burst stimulation priming. Eur J Pain. 2012;16(10):1403–13.  https://doi.org/10.1002/j.1532-2149.2012.00150.x.CrossRefPubMedGoogle Scholar
  149. 149.
    Mhalla A, Baudic S, Ciampi D, Andrade D, Gautron M, Perrot S, et al. Long-term maintenance of the analgesic effects of transcranial magnetic stimulation in fibromyalgia. Pain. 2011;152(7):1478–85.  https://doi.org/10.1016/j.pain.2011.01.034.CrossRefPubMedGoogle Scholar
  150. 150.
    Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation. Annu Rev Biomed Eng. 2007;9:527–65.  https://doi.org/10.1146/annurev.bioeng.9.061206.133100.CrossRefPubMedGoogle Scholar
  151. 151.
    Yoon E, Kim Y, Kim H. Transcranial direct current stimulation to lessen neuropathic pain after spinal cord injury a mechanistic PET study. Neurorehabil Neural Repair. 2014;28:250–9.CrossRefGoogle Scholar
  152. 152.
    Antal A, Terney D, Kühnl S, Paulus W. Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intracortical inhibition. J Pain Symptom Manage. 2010;39(5):890–903.  https://doi.org/10.1016/j.jpainsymman.2009.09.023.CrossRefPubMedGoogle Scholar
  153. 153.
    DosSantos MF, Love TM, Martikainen IK, Nascimento TD, Fregni F, Cummiford C, et al. Immediate effects of tDCS on the μ-opioid system of a chronic pain patient. Front Psychiatry. 2012;3:93.  https://doi.org/10.3389/fpsyt.2012.00093.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Andre-Obadia N, Peyron R, Mertens P, Mauguiere F, Laurent B, Garcia-Larrea L. Transcranial magnetic stimulation for pain control. Double-blind study of different frequencies against placebo, and correlation with motor cortex stimulation efficacy. Clin Neurophysiol. 2006;117:1536–44.CrossRefGoogle Scholar
  155. 155.
    Lefaucheur JP, Drouot X, Keravel Y, Nguyen JP. Pain relief induced by repetitive transcranial magnetic stimulation of precentral cortex. Neuroreport. 2001;12(13):2963–5.  https://doi.org/10.1097/00001756-200109170-00041.CrossRefPubMedGoogle Scholar
  156. 156.
    Saitoh Y, Hirayama A, Kishima H, Shimokawa T, Oshino S, Hirata M, et al. Reduction of intractable deafferentation pain due to spinal cord or peripheral lesion by high-frequency repetitive transcranial magnetic stimulation of the primary motor cortex. J Neurosurg. 2007;107(3):555–9.  https://doi.org/10.3171/JNS-07/09/0555.CrossRefPubMedGoogle Scholar
  157. 157.
    Lefaucheur J, André-Obadia N. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol. 2014;125:1250–06.CrossRefGoogle Scholar
  158. 158.
    Lefaucheur JP, Drouot X, Nguyen JP. Interventional neurophysiology for pain control: duration of pain relief following repetitive transcranial magnetic stimulation of the motor cortex. Neurophysiol Clin. 2001;31(4):247–52.  https://doi.org/10.1016/S0987-7053(01)00260-X.CrossRefPubMedGoogle Scholar
  159. 159.
    Rollnik JD, Wustefeld S, Dauper J, Karst M, Fink M, Kossev A, Dengler R. Repetitive transcranial magnetic stimulation for the treatment of chronic pain—a pilot study. Eur Neurol. 2002;48:6–10.CrossRefGoogle Scholar
  160. 160.
    Fricova J, Klirova M, Masopust V, Novak T, Verebova K, Rokyta R. Repetitive transcranial magnetic stimulation in the treatment of chronic orofacial pain. Physiol Res. 2013;62(Suppl 1):S125–34.PubMedGoogle Scholar
  161. 161.
    Hosomi K, Shimokawa T, Ikoma K, Nakamura Y, Sugiyama K, Ugawa Y, et al. Daily repetitive transcranial magnetic stimulation of primary motor cortex for neuropathic pain: a randomized, multicenter, double-blind, crossover, sham-controlled trial. Pain. 2013;154(7):1065–72.  https://doi.org/10.1016/j.pain.2013.03.016.CrossRefPubMedGoogle Scholar
  162. 162.
    Khedr EM, Kotb HI, Mostafa MG, Mohamad MF, Amr SA, Ahmed MA, Karim AA. Repetitive transcranial magnetic stimulation in neuropathic pain secondary to malignancy: a randomized clinical trial. Eur J Pain. 2015;19:519–27.  https://doi.org/10.1002/ejp.576.CrossRefPubMedGoogle Scholar
  163. 163.
    Khedr EM, Kotb H, Kamel NF, Ahmed MA, Sadek R, Rothwell JC. Longlasting antalgic effects of daily sessions of repetitive transcranial magnetic stimulation in central and peripheral neuropathic pain. J Neurol Neurosurg Psychiatry. 2005;76(6):833–8.  https://doi.org/10.1136/jnnp.2004.055806.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Hodaj H, Alibeu J-P, Payen J-F, Lefaucheur J-P. Treatment of chronic facial pain including cluster headache by repetitive transcranial magnetic stimulation of the motor cortex with maintenance sessions: a naturalistic study. Brain Stimul. 2015;8(4):801–7.  https://doi.org/10.1016/j.brs.2015.01.416.CrossRefPubMedGoogle Scholar
  165. 165.
    Pommier B, Créac’h C, Beauvieux V, Nuti C, Vassal F, Peyron R. Robot-guided neuronavigated rTMS as an alternative therapy for central (neuropathic) pain: clinical experience and long-term follow-up. Eur J Pain. 2016;20(6):907–16.  https://doi.org/10.1002/ejp.815.CrossRefPubMedGoogle Scholar
  166. 166.
    Lefaucheur J-P. Cortical neurostimulation for neuropathic pain. Pain. 2016;157:S81–9.  https://doi.org/10.1097/j.pain.0000000000000401.CrossRefPubMedGoogle Scholar
  167. 167.
    Fregni F, Boggio PS, Lima MC, Ferreira MJL, Wagner T, Rigonatti SP, et al. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain. 2006;122(1–2):197–209.  https://doi.org/10.1016/j.pain.2006.02.023.CrossRefPubMedGoogle Scholar
  168. 168.
    Fregni F, Gimenes R, Valle AC. A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum. 2006;54(12):3988–98.CrossRefGoogle Scholar
  169. 169.
    Bolognini N, Olgiati E, Maravita A, Ferraro F, Fregni F. Motor and parietal cortex stimulation for phantom limb pain and sensations. Pain. 2013;154:1274–80.CrossRefGoogle Scholar
  170. 170.
    Hagenacker T, Bude V, Naegel S, Holle D, Katsarava Z, Diener H-C, Obermann M. Patient-conducted anodal transcranial direct current stimulation of the motor cortex alleviates pain in trigeminal neuralgia. J Headache Pain. 2014;15(1):78.  https://doi.org/10.1186/1129-2377-15-78.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Knotkova H, Portenoy RK, Cruciani RA. Transcranial direct current stimulation (tDCS) relieved itching in a patient with chronic neuropathic pain. Clin J Pain. 2013;29(7).  https://doi.org/10.1097/AJP.0b013e31826b1329.CrossRefGoogle Scholar
  172. 172.
    Morishita T, Hyakutake K, Saita K, Takahara M, Shiota E, Inoue T. Pain reduction associated with improved functional interhemispheric balance following transcranial direct current stimulation for post-stroke central pain: a case study. J Neurol Sci. 2015;358(1–2):484–5.  https://doi.org/10.1016/j.jns.2015.08.1551.CrossRefPubMedGoogle Scholar
  173. 173.
    Zaghi S, DaSilva A, Acar M, Lopes M, Fregni F. One-year rTMS treatment for refractory trigeminal neuralgia. J Pain Symptom Manage. 2009;38:e1–5.CrossRefGoogle Scholar
  174. 174.
    Mori F, Codecà C, Kusayanagi H, Monteleone F, Buttari F, Fiore S, et al. Effects of anodal transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis. J Pain. 2010;11(5):436–42.  https://doi.org/10.1016/j.jpain.2009.08.011.CrossRefPubMedGoogle Scholar
  175. 175.
    Luedtke K, Rushton A, Wright C, Jürgens T, Polzer A, Mueller G, May A. Effectiveness of transcranial direct current stimulation preceding cognitive behavioural management for chronic low back pain: sham controlled double blinded randomised controlled trial. BMJ. 2015;350(18):h1640.  https://doi.org/10.1136/bmj.h1640.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    O’Connell NE, Cossar J, Marston L, Wand BM, Bunce D, De Souza LH, et al. Transcranial direct current stimulation of the motor cortex in the treatment of chronic nonspecific low back pain. Clin J Pain. 2013;29(1):26–34.  https://doi.org/10.1097/AJP.0b013e318247ec09.CrossRefPubMedGoogle Scholar
  177. 177.
    Wrigley PJ, Gustin SM, McIndoe L, Chakiath RJ, Henderson LA, Siddall PJ. Longstanding neuropathic pain after spinal cord injury is refractory to transcranial direct current stimulation: a randomized controlled trial. Pain. 2013;154(10):2178–84.CrossRefGoogle Scholar
  178. 178.
    Soler MD, Kumru H, Pelayo R, Vidal J, Tormos JM, Fregni F, et al. Effectiveness of transcranial direct current stimulation and visual illusion on neuropathic pain in spinal cord injury. Brain. 2010;133(9):2565–77.  https://doi.org/10.1093/brain/awq184.CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Donnell A, Nascimento TD, Lawrence M, Gupta V, Zieba T, Truong DQ, et al. High-definition and non-invasive brain modulation of pain and motor dysfunction in chronic TMD. Brain Stimul. 2015;8(6):1085–92.  https://doi.org/10.1016/j.brs.2015.06.008.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Villamar M, Wivatvongvana P, Patumanond J. Focal modulation of the primary motor cortex in fibromyalgia using 4× 1-ring high-definition transcranial direct current stimulation (HD-tDCS): immediate and delayed. J Pain. 2013;14(4):371–83.CrossRefGoogle Scholar
  181. 181.
    Castillo-Saavedra L, Gebodh N, Bikson M, Diaz-Cruz C, Brandao R, Coutinho L, et al. Clinically effective treatment of fibromyalgia pain with high-definition transcranial direct current stimulation: phase II open-label dose optimization. J Pain. 2016;17(1):14–26.  https://doi.org/10.1016/j.jpain.2015.09.009.CrossRefPubMedGoogle Scholar
  182. 182.
    Brunoni AR, Ferrucci R, Fregni F, Boggio PS, Priori A. Transcranial direct current stimulation for the treatment of major depressive disorder: a summary of preclinical, clinical and translational findings. Prog Neuropsychopharmacol Biol Psychiatry. 2012;39(1):9–16.  https://doi.org/10.1016/j.pnpbp.2012.05.016.CrossRefPubMedGoogle Scholar
  183. 183.
    Kolb B, Teskey GC. Age, experience, injury, and the changing brain. Dev Psychobiol. 2012;54(3):311–25.  https://doi.org/10.1002/dev.20515.CrossRefPubMedGoogle Scholar
  184. 184.
    Stortelder F, Ploegmakers-Burg M. Adolescence and the reorganization of infant development: a neuro-psychoanalytic model. J Am Acad Psychoanal Dyn Psychiatry. 2010;38(3):503–31.  https://doi.org/10.1521/jaap.2010.38.3.503.CrossRefPubMedGoogle Scholar
  185. 185.
    Eldaief MC, Press DZ, Pascual-Leone A. Transcranial magnetic stimulation in neurology: a review of established and prospective applications. Neurol Clin Pract. 2013;3(6):519–26.  https://doi.org/10.1212/01.CPJ.0000436213.11132.8e.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Klein MM, Treister R, Raij T, Pascual-Leone A, Park L, Nurmikko T, et al. Transcranial magnetic stimulation of the brain: guidelines for pain treatment research. Pain. 2015;156(9):1601–14.  https://doi.org/10.1097/j.pain.0000000000000210.CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Palm U, Segmiller FM, Epple AN, Freisleder F-J, Koutsouleris N, Schulte-Körne G, Padberg F. Transcranial direct current stimulation in children and adolescents: a comprehensive review. J Neural Transm (Vienna). 2016;123(10):1219–34.  https://doi.org/10.1007/s00702-016-1572-z.CrossRefGoogle Scholar
  188. 188.
    Rajapakse T, Kirton A. Non-invasive brain stimulation in children: applications and future directions. Transl Neurosci. 2013;4(2).  https://doi.org/10.2478/s13380-013-0116-3.
  189. 189.
    Schwedt TJ, Vargas B. Neurostimulation for treatment of migraine and cluster headache. Pain Med. 2015;16(9):1827–34.  https://doi.org/10.1111/pme.12792.CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Quintana H. Transcranial magnetic stimulation in persons younger than the age of 18. J Ect. 2005;21(2):88–95.  https://doi.org/10.1097/01.yct.0000162556.02720.58.CrossRefPubMedGoogle Scholar
  191. 191.
    Gilbert DL, Garvey MA, Bansal AS, Lipps T, Zhang J, Wassermann EM. Should transcranial magnetic stimulation research in children be considered minimal risk? Clin Neurophysiol. 2004;115(8):1730–9.  https://doi.org/10.1016/j.clinph.2003.10.037.CrossRefPubMedGoogle Scholar
  192. 192.
    Beauchamp MS, Beurlot MR, Fava E, Nath AR, Parikh NA, Saad ZS, et al. The developmental trajectory of brain-scalp distance from birth through childhood: Implications for functional neuroimaging. PLoS One. 2011;6(9):e24981.  https://doi.org/10.1371/journal.pone.0024981.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Brain Development Cooperative Group. Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI Study of Normal Brain Development. Cereb Cortex. 2012;22(1):1–12.  https://doi.org/10.1093/cercor/bhr018.CrossRefGoogle Scholar
  194. 194.
    Reiner PB. Comment on “Can transcranial electrical stimulation improve learning difficulties in atypical brain development? A future possibility for cognitive training” by Krause and Cohen Kadosh. Dev Cogn Neurosci. 2013;6:195–6.  https://doi.org/10.1016/j.dcn.2013.05.002.CrossRefPubMedGoogle Scholar
  195. 195.
    Moliadze V, Andreas S, Lyzhko E, Schmanke T, Gurashvili T, Freitag CM, Siniatchkin M. Ten minutes of 1 mA transcranial direct current stimulation was well tolerated by children and adolescents: self-reports and resting state EEG analysis. Brain Res Bull. 2015;119(Pt A):25–33.  https://doi.org/10.1016/j.brainresbull.2015.09.011.CrossRefPubMedGoogle Scholar
  196. 196.
    Krishnan C, Santos L, Peterson MD, Ehinger M. Safety of noninvasive brain stimulation in children and adolescents. Brain Stimul. 2015;8(1):76–87.  https://doi.org/10.1016/j.brs.2014.10.012.CrossRefPubMedGoogle Scholar
  197. 197.
    Liebetanz D, Klinker F, Hering D, Koch R, Nitsche MA, Potschka H, et al. Anticonvulsant effects of transcranial direct-current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. Epilepsia. 2006;47(7):1216–24.  https://doi.org/10.1111/j.1528-1167.2006.00539.x.CrossRefPubMedGoogle Scholar
  198. 198.
    Gangitano M, Valero-Cabré A, Tormos JM, Mottaghy FM, Romero JR, Pascual-Leone A. Modulation of input-output curves by low and high frequency repetitive transcranial magnetic stimulation of the motor cortex. Clin Neurophysiol. 2002;113(8):1249–57. http://www.ncbi.nlm.nih.gov/pubmed/12140004.CrossRefGoogle Scholar
  199. 199.
    Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A. Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol. 2000;111(5):800–5. http://www.ncbi.nlm.nih.gov/pubmed/10802449.CrossRefGoogle Scholar
  200. 200.
    Auvichayapat N, Rotenberg A, Gersner R, Ngodklang S, Tiamkao S, Tassaneeyakul W, Auvichayapat P. Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy. Brain Stimul. 2013;6(4):696–700.  https://doi.org/10.1016/j.brs.2013.01.009.CrossRefPubMedGoogle Scholar
  201. 201.
    Varga ET, Terney D, Atkins MD, Nikanorova M, Jeppesen DS, Uldall P, et al. Transcranial direct current stimulation in refractory continuous spikes and waves during slow sleep: a controlled study. Epilepsy Res. 2011;97(1–2):142–5.  https://doi.org/10.1016/j.eplepsyres.2011.07.016.CrossRefPubMedGoogle Scholar
  202. 202.
    Shelyakin AM, Preobrazhenskaya IG, Kassil’ MV, Bogdanov OV. The effects of transcranial micropolarization on the severity of convulsive fits in children. Neurosci Behav Physiol. 2001;31(5):555–60. http://www.ncbi.nlm.nih.gov/pubmed/11693481.CrossRefGoogle Scholar
  203. 203.
    Schindler K, Leung H, Lehnertz K, Elger CE. How generalised are secondarily “generalised” tonic–clonic seizures? J Neurol Neurosurg Psychiatry. 2007;78(9):993–6.  https://doi.org/10.1136/jnnp.2006.108753.CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Gotman J, Grova C, Bagshaw A, Kobayashi E, Aghakhani Y, Dubeau F. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain, (Track II). Proc Natl Acad Sci U S A. 2005;102(42):15236–40.CrossRefGoogle Scholar
  205. 205.
    Faria P, Fregni F, Sebastião F, Dias AI, Leal A. Feasibility of focal transcranial DC polarization with simultaneous EEG recording: preliminary assessment in healthy subjects and human epilepsy. Epilepsy Behav. 2012;25(3):417–25.  https://doi.org/10.1016/j.yebeh.2012.06.027.CrossRefPubMedGoogle Scholar
  206. 206.
    Auvichayapat N, Sinsupan K, Tunkamnerdthai O, Auvichayapat P. Transcranial direct current stimulation for treatment of childhood pharmacoresistant Lennox-Gastaut syndrome: a pilot study. Front Neurol. 2016;7:66.  https://doi.org/10.3389/fneur.2016.00066.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Yook S-W, Park S-H, Seo J-H, Kim S-J, Ko M-H. Suppression of seizure by cathodal transcranial direct current stimulation in an epileptic patient—a case report. Ann Rehabil Med. 2011;35(4):579.  https://doi.org/10.5535/arm.2011.35.4.579.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    San-Juan D, Del Castillo Calcáneo JD, González-Aragón MF, Bermúdez Maldonado L, Moreno Avellán Á, Gómez Argumosa EV, Fregni F. Transcranial direct current stimulation in adolescent and adult Rasmussen’s encephalitis. Epilepsy Behav. 2011;20(1):126–31.  https://doi.org/10.1016/j.yebeh.2010.10.031.CrossRefPubMedGoogle Scholar
  209. 209.
    Tekturk P, Erdogan ET, Kurt A, Kocagoncu E, Kucuk Z, Kinay D, et al. Transcranial direct current stimulation improves seizure control in patients with Rasmussen encephalitis. Epileptic Disord. 2016;18(1):58–66.  https://doi.org/10.1684/epd.2016.0796.CrossRefPubMedGoogle Scholar
  210. 210.
    Pineda E, Shin D, Sankar R, Mazarati AM. Comorbidity between epilepsy and depression: experimental evidence for the involvement of serotonergic, glucocorticoid, and neuroinflammatory mechanisms. Epilepsia. 2010;51(Suppl 3):110–4.  https://doi.org/10.1111/j.1528-1167.2010.02623.x.CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Nitsche MA, Liebetanz D, Schlitterlau A, Henschke U, Fricke K, Frommann K, et al. GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. Eur J Neurosci. 2004;19(10):2720–6.  https://doi.org/10.1111/j.0953-816X.2004.03398.x.CrossRefPubMedGoogle Scholar
  212. 212.
    Scorza FA, Brunoni AR. Transcranial direct current stimulation against sudden unexpected death in epilepsy: press that button again, please. Brain Stimul. 2015;8(4):839–40.  https://doi.org/10.1016/j.brs.2015.04.006.CrossRefPubMedGoogle Scholar
  213. 213.
    Hufnagel A, Elger CE, Marx W, Ising A. Magnetic motor-evoked potentials in epilepsy: effects of the disease and of anticonvulsant medication. Ann Neurol. 1990;28(5):680–6.  https://doi.org/10.1002/ana.410280513.CrossRefPubMedGoogle Scholar
  214. 214.
    Michelucci R, Passarelli D, Riguzzi P, Buzzi AM, Gardella E, Tassinari CA. Transcranial magnetic stimulation in partial epilepsy: drug-induced changes of motor excitability. Acta Neurol Scand. 1996;94(1):24–30. http://www.ncbi.nlm.nih.gov/pubmed/8874589.CrossRefGoogle Scholar
  215. 215.
    Michelucci R, Valzania F, Tassinari CA. Chapter 62 Transcranial magnetic stimulation in epilepsy and Parkinson’s disease: drug induced changes in motor excitability. Suppl Clin Neurophysiol. 2002;54:416–21.  https://doi.org/10.1016/S1567-424X(09)70482-9.CrossRefGoogle Scholar
  216. 216.
    Cantello R, Civardi C, Cavalli A, Varrasi C, Tarletti R, Monaco F, Migliaretti G. Cortical excitability in cryptogenic localization-related epilepsy: interictal transcranial magnetic stimulation studies. Epilepsia. 2000;41(6):694–704. http://www.ncbi.nlm.nih.gov/pubmed/10840401.CrossRefGoogle Scholar
  217. 217.
    Griesemer DA, Kellner CH, Beale MD, Smith GM. Electroconvulsive therapy for treatment of intractable seizures. Initial findings in two children. Neurology. 1997;49(5):1389–92. http://www.ncbi.nlm.nih.gov/pubmed/9371927.CrossRefGoogle Scholar
  218. 218.
    Lisanby SH, Bazil CW, Resor SR, Nobler MS, Finck DA, Sackeim HA. ECT in the treatment of status epilepticus. J ECT. 2001;17(3):210–5. http://www.ncbi.nlm.nih.gov/pubmed/11528315.CrossRefGoogle Scholar
  219. 219.
    Hsu W-Y, Cheng C-H, Lin M-W, Shih Y-H, Liao K-K, Lin Y-Y. Antiepileptic effects of low frequency repetitive transcranial magnetic stimulation: a meta-analysis. Epilepsy Res. 2011;96(3):231–40.  https://doi.org/10.1016/j.eplepsyres.2011.06.002.CrossRefPubMedGoogle Scholar
  220. 220.
    Sloan JA, Cella D, Hays RD. Clinical significance of patient-reported questionnaire data: another step toward consensus. J Clin Epidemiol. 2005;58(12):1217–9.  https://doi.org/10.1016/j.jclinepi.2005.07.009.CrossRefPubMedGoogle Scholar
  221. 221.
    Rotenberg A, Depositario-cabacar D, Hyunji E. Transient suppression of seizures by repetitive transcranial magnetic stimulation in a case of Rasmussen’s encephalitis. Epilepsy Behav. 2008;13:260–2.  https://doi.org/10.1016/j.yebeh.2007.12.022.CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Rotenberg A, Bae E, Takeoka M, Tormos J, Schachter S, Pascual-Leone A. Repetitive transcranial magnetic stimulation in treatment of epilepsia partialis continua. Epilepsy Behav. 2009;14(1):253–7.  https://doi.org/10.1016/j.yebeh.2008.09.007.CrossRefPubMedGoogle Scholar
  223. 223.
    Graff-Guerrero A, Olvera J, Ruiz-García M, Avila-Ordoñez U, Vaugier V, García-Reyna JC. rTMS reduces focal brain hyperperfusion in two patients with EPC. Acta Neurol Scand. 2004;109(4):290–6.  https://doi.org/10.1046/j.1600-0404.2003.00222.x.CrossRefPubMedGoogle Scholar
  224. 224.
    Kimbrell TA, Dunn RT, George MS, Danielson AL, Willis MW, Repella JD, et al. Left prefrontal-repetitive transcranial magnetic stimulation (rTMS) and regional cerebral glucose metabolism in normal volunteers. Psychiatry Res. 2002;115(3):101–13. http://www.ncbi.nlm.nih.gov/pubmed/12208488.CrossRefGoogle Scholar
  225. 225.
    Paus T, Jech R, Thompson CJ, Comeau R, Peters T, Evans AC. Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci. 1997;17(9):3178–84. http://www.ncbi.nlm.nih.gov/pubmed/9096152.CrossRefGoogle Scholar
  226. 226.
    Siebner HR, Peller M, Willoch F, Minoshima S, Boecker H, Auer C, et al. Lasting cortical activation after repetitive TMS of the motor cortex: a glucose metabolic study. Neurology. 2000;54(4):956–63. http://www.ncbi.nlm.nih.gov/pubmed/10690992.CrossRefGoogle Scholar
  227. 227.
    Stallings L, Speer A, Spicer K, Cheng K, George M. Combining SPECT and repetitive transcranial magnetic stimulation (rTMS)–left prefrontal stimulation decreases relative perfusion locally in a dose dependent manner (abstract). Neuroimage. 1997;5:S521. https://www.scienceopen.com/document?vid=6bbc2130-d492-4ec3-961d-1700d30df2c9.Google Scholar
  228. 228.
    Morales OG, Henry ME, Nobler MS, Wassermann EM, Lisanby SH. Electroconvulsive therapy and repetitive transcranial magnetic stimulation in children and adolescents: a review and report of two cases of epilepsia partialis continua. Child Adolesc Psychiatr Clin North Am. 2005;14(1 SPEC.ISS.):193–210.  https://doi.org/10.1016/j.chc.2004.07.010.CrossRefGoogle Scholar
  229. 229.
    Pereira LS, Müller VT, da Mota Gomes M, Rotenberg A, Fregni F. Safety of repetitive transcranial magnetic stimulation in patients with epilepsy: a systematic review. Epilepsy Behav. 2016;57:167–76.  https://doi.org/10.1016/j.yebeh.2016.01.015.CrossRefPubMedGoogle Scholar
  230. 230.
    Seynaeve L, Van Paesschen W. Response to “Safety of repetitive transcranial magnetic stimulation in patients with epilepsy: a systematic review” by Luisa Santos Pereira and colleagues. Epilepsy Behav. 2016;62:308.  https://doi.org/10.1016/j.yebeh.2016.07.002.CrossRefPubMedGoogle Scholar
  231. 231.
    Seynaeve L, Devroye A, Dupont P, Van Paesschen W. Randomized crossover sham-controlled clinical trial of targeted low-frequency transcranial magnetic stimulation comparing a figure-8 and a round coil to treat refractory neocortical epilepsy. Epilepsia. 2016;57(1):141–50.  https://doi.org/10.1111/epi.13247.CrossRefPubMedGoogle Scholar
  232. 232.
    Post RM, Kimbrell T, Frye M, George M, McCann U, Little J, et al. Implications of kindling and quenching for the possible frequency dependence Of rTMS. CNS Spectrums. 1997;2(1):54–60.  https://doi.org/10.1017/S1092852900004508.CrossRefGoogle Scholar
  233. 233.
    Hagberg B, Hagberg G, Beckung E, Uvebrant P. Changing panorama of cerebral palsy in Sweden. VIII. Prevalence and origin in the birth year period 1991-94. Acta Paediatr. 2001;90(3):271–7. http://www.ncbi.nlm.nih.gov/pubmed/11332166.CrossRefGoogle Scholar
  234. 234.
    Mercuri E, Rutherford M, Cowan F, Pennock J, Counsell S, Papadimitriou M, et al. Early prognostic indicators of outcome in infants with neonatal cerebral infarction: a clinical, electroencephalogram, and magnetic resonance imaging study. Pediatrics. 1999;103(1):39–46. http://www.ncbi.nlm.nih.gov/pubmed/9917437.CrossRefGoogle Scholar
  235. 235.
    Mercuri E, Barnett A, Rutherford M, Guzzetta A, Haataja L, Cioni G, et al. Neonatal cerebral infarction and neuromotor outcome at school age. Pediatrics. 2004;113(1 Pt 1):95–100. http://www.ncbi.nlm.nih.gov/pubmed/14702455.CrossRefGoogle Scholar
  236. 236.
    de Veber G, Andrew M, Adams C, Bjornson B, Booth F, Buckley DJ, et al. Cerebral sinovenous thrombosis in children. N Engl J Med. 2001;345(6):417–23.  https://doi.org/10.1056/NEJM200108093450604.CrossRefGoogle Scholar
  237. 237.
    Nelson KB. Can we prevent cerebral palsy? N Engl J Med. 2003;349(18):1765–9.  https://doi.org/10.1056/NEJMsb035364.CrossRefPubMedGoogle Scholar
  238. 238.
    Nelson KB, Lynch JK. Stroke in newborn infants. Lancet Neurol. 2004;3(3):150–8.  https://doi.org/10.1016/S1474-4422(04)00679-9.CrossRefPubMedGoogle Scholar
  239. 239.
    deVeber GA, MacGregor D, Curtis R, Mayank S. Neurologic outcome in survivors of childhood arterial ischemic stroke and sinovenous thrombosis. J Child Neurol. 2000;15(5):316–24.  https://doi.org/10.1177/088307380001500508.CrossRefPubMedGoogle Scholar
  240. 240.
    Mercuri E, Cowan F, Gupte G, Manning R, Laffan M, Rutherford M, et al. Prothrombotic disorders and abnormal neurodevelopmental outcome in infants with neonatal cerebral infarction. Pediatrics. 2001;107(6):1400–4. http://www.ncbi.nlm.nih.gov/pubmed/11389264.CrossRefGoogle Scholar
  241. 241.
    Mineyko A, Kirton A. The black box of perinatal ischemic stroke pathogenesis. J Child Neurol. 2011;26(9):1154–62.  https://doi.org/10.1177/0883073811408312.CrossRefPubMedPubMedCentralGoogle Scholar
  242. 242.
    Petty GW, Brown RD, Whisnant JP, Sicks JD, O’Fallon WM, Wiebers DO. Ischemic stroke subtypes: a population-based study of incidence and risk factors. Stroke. 1999;30(12):2513–6. http://www.ncbi.nlm.nih.gov/pubmed/10582970.CrossRefGoogle Scholar
  243. 243.
    Raju TNK, Nelson KB, Ferriero D, Lynch JK, NICHD-NINDS Perinatal Stroke Workshop Participants. Ischemic perinatal stroke: summary of a workshop sponsored by the National Institute of Child Health and Human Development and the National Institute of Neurological Disorders and Stroke. Pediatrics. 2007;120(3):609–16.  https://doi.org/10.1542/peds.2007-0336.CrossRefPubMedGoogle Scholar
  244. 244.
    Sreenan C, Bhargava R, Robertson CM. Cerebral infarction in the term newborn: clinical presentation and long-term outcome. J Pediatr. 2000;137(3):351–5.  https://doi.org/10.1067/mpd.2000.107845.CrossRefPubMedGoogle Scholar
  245. 245.
    Collange Grecco LA, de Almeida Carvalho Duarte N, Mendonça ME, Galli M, Fregni F, Oliveira CS. Effects of anodal transcranial direct current stimulation combined with virtual reality for improving gait in children with spastic diparetic cerebral palsy: a pilot, randomized, controlled, double-blind, clinical trial. Clin Rehabil. 2015;29(12):1212–23.  https://doi.org/10.1177/0269215514566997.CrossRefPubMedGoogle Scholar
  246. 246.
    Bogdanov OV, Pinchuk DY, Pisar’kova EV, Shelyakin AM, Sirbiladze KT. The use of the method of transcranial micropolarization to decrease the severity hyperkineses in patients with infantile cerebral palsy. Neurosci Behav Physiol. 1994;24(5):442–5. http://www.ncbi.nlm.nih.gov/pubmed/7838369.CrossRefGoogle Scholar
  247. 247.
    Grecco LAC, Oliveira CS, Galli M, Cosmo C, Duarte NAC, Zanon N, et al. Spared primary motor cortex and the presence of MEP in cerebral palsy dictate the responsiveness to tDCS during gait training. Front Human Neurosci. 2016;10:1–11.  https://doi.org/10.3389/fnhum.2016.00361.CrossRefGoogle Scholar
  248. 248.
    Kesar TM, Sawaki L, Burdette JH, Cabrera MN, Kolaski K, Smith BP, et al. Motor cortical functional geometry in cerebral palsy and its relationship to disability. Clin Neurophysiol. 2012;123(7):1383–90.  https://doi.org/10.1016/j.clinph.2011.11.005.CrossRefPubMedGoogle Scholar
  249. 249.
    Mackey A, Stinear C, Stott S, Byblow WD. Upper limb function and cortical organization in youth with unilateral cerebral palsy. Front Neurol. 2014;5:117.  https://doi.org/10.3389/fneur.2014.00117.CrossRefPubMedPubMedCentralGoogle Scholar
  250. 250.
    Pihko E, Nevalainen P, Vaalto S, Laaksonen K, Mäenpää H, Valanne L, Lauronen L. Reactivity of sensorimotor oscillations is altered in children with hemiplegic cerebral palsy: a magnetoencephalographic study. Human Brain Mapping. 2014;35(8):4105–17.  https://doi.org/10.1002/hbm.22462.CrossRefPubMedGoogle Scholar
  251. 251.
    Carvalho Lima VLC, Collange Grecco LA, Marques VC, Fregni F, Brandão de Ávila CR. Transcranial direct current stimulation combined with integrative speech therapy in a child with cerebral palsy: a case report. J Bodyw Mov Ther. 2016;20(2):252–7.  https://doi.org/10.1016/j.jbmt.2015.03.007.CrossRefPubMedGoogle Scholar
  252. 252.
    D’Agati D, Bloch Y, Levkovitz Y, Reti I. rTMS for adolescents: safety and efficacy considerations. Psychiatry Res. 2010;177(3):280–5.  https://doi.org/10.1016/j.psychres.2010.03.004.CrossRefPubMedGoogle Scholar
  253. 253.
    Valle AC, Dionisio K, Pitskel NB, Pascual-Leone A, Orsati F, Ferreira MJL, et al. Low and high frequency repetitive transcranial magnetic stimulation for the treatment of spasticity. Dev Med Child Neurol. 2007;49(7):534–8.  https://doi.org/10.1111/j.1469-8749.2007.00534.x.CrossRefPubMedGoogle Scholar
  254. 254.
    Quartarone A, Bagnato S, Rizzo V, Morgante F, Sant’angelo A, Battaglia F, et al. Distinct changes in cortical and spinal excitability following high-frequency repetitive TMS to the human motor cortex. Exp Brain Res. 2005;161(1):114–24.  https://doi.org/10.1007/s00221-004-2052-5.CrossRefPubMedGoogle Scholar
  255. 255.
    Gupta M, Lal Rajak B, Bhatia D, Mukherjee A. Effect of r-TMS over standard therapy in decreasing muscle tone of spastic cerebral palsy patients. J Med Eng Technol. 2016;40(4):210–6.  https://doi.org/10.3109/03091902.2016.1161854.CrossRefPubMedGoogle Scholar
  256. 256.
    Guo Z, Xing G, He B, Chen H, Ou J, McClure MA, et al. Dynamic modulation of rTMS on functional connectivity and functional network connectivity to children with cerebral palsy: a case report. Neuroreport. 2016;27(4):284–8.  https://doi.org/10.1097/WNR.0000000000000534.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mirret M. El-Hagrassy
    • 1
  • Felipe Jones
    • 1
  • Gleysson Rosa
    • 1
  • Felipe Fregni
    • 1
  1. 1.Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General HospitalCharlestownUSA

Personalised recommendations