Laser Ignition for Pulse Detonation Engines

Conference paper

Abstract

The high pressures and resultant momentum flux out of the chamber generate thrust. The ignition system of PDE has always posed problems in commercial applications. Microwave and laser-induced detonation in the mixture ofhydrogen with flake aluminum particles is simulated based on Eulerian approach. Minimum pulse energy of detonation is calculated for different parameters of laser pulse, mass fractions of particles, and compositions of gas mixture. The threshold intensity of optical breakdown on individual metal particle, and its dependence on contributing factors (particle radius, location of particle, total energy and time of laser pulse, radius of laser spot) are studied.

Notes

Acknowledgements

This work was financially supported by the Ministry of Education and Science of Russian Federation (agreement No 14.578.21.0203, unique identifier of applied scientific research RFMEFI57816X0203).

References

  1. 1.
    Aleksandrov, B.S., Klimuk, E.A., Kutumov, K.A., Lacour, B.M., Puech, V., Troshchinenko, G.A.: A repetitively pulsed HF laser with a large discharge gap operating on the F$_2$-H$_2$ mixture. Quantum Electron. 35, 805–808 (2005)CrossRefGoogle Scholar
  2. 2.
    Bityurin, V.A., Brovkin, V.G., Vedenin, P.V.: Investigation of the electromagnetic wave scattering dynamics during microwave streamer evolution. J. Tech. Phys. 57, 95–105 (2012)CrossRefGoogle Scholar
  3. 3.
    Chang, R.K., Eickmans, J.H., Hsieh, W.-F., Wood, C.F., Zhang, J.-Z., Zheng, J.: Laser-induced break-down in large transparent water droplets. Appl. Opti. 27, 2377–2385 (1988)CrossRefGoogle Scholar
  4. 4.
    Emelyanov, V.N., Volkov, K.N.: Prediction of the characteristics of the process of interaction of pulsed laser radiation with gas-dispersed systems. J. Eng. Phys. Thermophys. 78, 440–448 (2005)CrossRefGoogle Scholar
  5. 5.
    Emelyanov, V.N., Volkov, K.N.: Numerical simulation of laser-induced detonation in mixture of hydrogen with suspended metal particles. Int. J. Hydrog. Energy 39, 6222–6232 (2014)CrossRefGoogle Scholar
  6. 6.
    Fomin, P.A., Chen, J.-R.: Effect of chemically inert particles on parameters and suppression of detonation in gases, Combustion. Explos. Shock Waves 45, 303–313 (2009)CrossRefGoogle Scholar
  7. 7.
    Frost, D.L., Zhang, F.: Non-ideal blast waves from heterogeneous explosives. Mater. Sci. Forum 465–466, 421–426 (2004)CrossRefGoogle Scholar
  8. 8.
    Ingignoli, W., Veyssiere, B., Khasainov, B.A.: Study of detonation initiation in unconfined aluminium dust clouds. In: Gaseous and Heterogeneous Detonations, pp. 337–350. Moscow (1999)Google Scholar
  9. 9.
    Loth, E., Sivier, S., Baum, J.: Dusty detonation simulations with adaptive unstructured finite-elements. AIAA J. 35, 1018–1024 (1997)CrossRefMATHGoogle Scholar
  10. 10.
    Negin, A.E., Osipov, V.P., Pakhomov, A.V.: Optical breakdown in aerosols under the influence of pulsed $CO_2$ laser radiation. Quantum Electron. 16, 1458–1463 (1986)Google Scholar
  11. 11.
    Papalexandris, M.V.: Numerical simulation of detonations in mixtures of gases and solid particles. J. Fluid Mechan. 507, 95–142 (2004)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Papalexandris, M.V.: The multidimensional structure of detonation waves in heterogeneous mixtures containing inert solid particles. In: Proceedings of the European Combustion Meeting. Louvain-la-Neuve (2005)Google Scholar
  13. 13.
    Qin, Q., Attenborough, K.: Characteristics and application of laser-generated acoustic shock waves in air. Appl. Acoust. 65, 325–340 (2004)CrossRefGoogle Scholar
  14. 14.
    Tanguay, V., Goroshin, S., Higgins, A.J., Zhang, F.: Aluminum particle combustion in high-speed detonation products. Combust. Sci. Technol. 181, 670–693 (2009)CrossRefGoogle Scholar
  15. 15.
    Tulis, A.J., Selman, J.R.: Detonation tube studies of aluminum particles dispersed in air. Proc. Combust. Inst. 19, 655–663 (1982)CrossRefGoogle Scholar
  16. 16.
    Volkov, K.: Laser-induced breakdown and detonation in gas-particle and gas-droplet mixtures. Horiz. World Phys. 284, 127–178 (2015)Google Scholar
  17. 17.
    Vorobiev, V.S.: Plasma arising during the interaction of laser radiation with solids. Adv. Phys. Sci. 36, 1129–1157 (1993)Google Scholar
  18. 18.
    Zhang, F., Grőnig, H., Van De Ven, A.: DDT and detonation waves in dust-air mixtures. Shock Waves 11, 53–71 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Kingston UniversityLondonUK

Personalised recommendations