Advertisement

Reconstruction Methods in THz Single-Pixel Imaging

  • Martin BurgerEmail author
  • Janic Föcke
  • Lukas Nickel
  • Peter Jung
  • Sven Augustin
Chapter
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

The aim of this paper is to discuss some advanced aspects of image reconstruction in single-pixel cameras, focusing in particular on detectors in the THz regime. We discuss the reconstruction problem from a computational imaging perspective and provide a comparison of the effects of several state-of-the-art regularization techniques. Moreover, we focus on some advanced aspects arising in practice with THz cameras, which lead to nonlinear reconstruction problems: the calibration of the beam reminiscent of the Retinex problem in imaging and phase recovery problems. Finally, we provide an outlook to future challenges in the area.

Keywords

Single-pixel imaging Computational image reconstruction Calibration problems Phase recovery Retinex 

Notes

Acknowledgements

This work has been supported by the German research foundation (DFG) through SPP 1798, Compressed Sensing in Information Processing, projects BU 2327/4-1 and JU 2795/3. MB acknowledges further support by ERC via Grant EU FP7 ERC Consolidator Grant 615216 LifeInverse.

References

  1. 1.
    A. Ahmed, A. Aghasi, P. Hand, Blind deconvolutional phase retrieval via convex programming. CoRR (2018)Google Scholar
  2. 2.
    S. Augustin, S. Frohmann, P. Jung, H.-W. Hübers, An optically controllable 0.35 THz single-pixel camera for millimeter resolution imaging. In 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2017), pp. 1–2Google Scholar
  3. 3.
    S. Augustin, J. Hieronymus, P. Jung, H.-W. Hübers, Compressed sensing in a fully non-mechanical 350 ghz imaging setting. J. Infrared Millim. Terahertz Waves 36(5), 496–512 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Ahmed, J. Romberg, B. Recht, Blind deconvolution using convex programming. IEEE Trans. Inf. Theory 60(3), 1711–1732 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    R.G. Baraniuk, Compressive sensing. IEEE Signal Process. Mag. 24(4), 118–121 (2007)CrossRefGoogle Scholar
  6. 6.
    M. Benning, M. Burger, Modern regularization methods for inverse problems. Acta Numer. 27, 1–111 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    H.H. Bauschke, P.L. Combettes, D. Russell Luke. Phase retrieval, error reduction algorithm, and fienup variants: a view from convex optimization. JOSA A, 19(7), 1334–1345 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Burger, H. Dirks, C.-B. Schonlieb, A variational model for joint motion estimation and image reconstruction. SIAM J. Imaging Sci. 11(1), 94–128 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    A.M. Bruckstein, M. Elad, M. Zibulevsky, On the uniqueness of non-negative sparse & redundant representations, in IEEE International Conference on Acoustics, Speech and Signal Processing (IEEE, 2008), pp 5145–5148Google Scholar
  10. 10.
    B. Blaschke-Kaltenbacher, H.W. Engl, Regularization methods for nonlinear ill-posed problems with applications to phase reconstruction, in Inverse Problems in Medical Imaging and Nondestructive Testing (Springer, 1997), pp. 17–35Google Scholar
  11. 11.
    K. Bredies, K. Kunisch, T. Pock, Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    M. Burger, S. Osher. A guide to the tv zoo, in Level Set and PDE Based Reconstruction Methods in Imaging (Springer, 2013), pp 1–70Google Scholar
  13. 13.
    M. Burger, A. Sawatzky, G. Steidl, First order algorithms in variational image processing, in Splitting Methods in Communication, Imaging, Science, and Engineering (Springer, 2016), pp. 345–407Google Scholar
  14. 14.
    V. Caselles, A. Chambolle, M. Novaga, Total variation in imaging, in Handbook of Mathematical Methods in Imaging, pp. 1–39 (2014)Google Scholar
  15. 15.
    W.L. Chan, K. Charan, D. Takhar, K.F. Kelly, R.G. Baraniuk, D.M. Mittleman, A single-pixel terahertz imaging system based on compressed sensing. Appl. Phys. Lett. 93(12), 121105 (2008)CrossRefGoogle Scholar
  16. 16.
    E.J. Candes, X. Li, M. Soltanolkotabi, Phase retrieval via wirtinger flow: theory and algorithms. IEEE Trans. Inf. Theory 61(4), 1985–2007 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    E.J. Candes, Y. Plan, A probabilistic and ripless theory of compressed sensing. IEEE Trans. Inf. Theory 57(11), 7235–7254 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    E.J. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2), 489–509 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    E.J. Candes, T. Strohmer, V. Voroninski, Phaselift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66(8), 1241–1274 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    J.-F. Cai, W. Xu, Guarantees of total variation minimization for signal recovery. Inf. Inference 328–353 (2015)Google Scholar
  22. 22.
    D.L. Donoho, et al, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    M.F. Duarte, M.A. Davenport, D. Takhar, J.N. Laska, T. Sun, K.F. Kelly, R.G. Baraniuk, Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25(2), 83–91 (2008)CrossRefGoogle Scholar
  24. 24.
    H. Dirks, A flexible primal-dual toolbox. arXiv:1603.05835 [cs, math] (2016)
  25. 25.
    D.L. Donoho, Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    M.P. Edgar, G.M. Gibson, M.J. Padgett, Principles and prospects for single-pixel imaging. Nat. Photonics 1 (2018)Google Scholar
  27. 27.
    H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, vol. 375, 1st edn. Springer Netherlands (2000)Google Scholar
  28. 28.
    Y.C. Eldar, G. Kutyniok, Compressed Sensing: Theory and Applications. Cambridge University Press (2012)Google Scholar
  29. 29.
    J.R. Fienup, Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982)CrossRefGoogle Scholar
  30. 30.
    S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing Appl. Numer. Harmon. Anal. Birkhäuser, Springer, New York (2013)zbMATHCrossRefGoogle Scholar
  31. 31.
    R. Gribonval, G. Chardon, L. Daudet, Blind calibration for compressed sensing by convex optimization, in 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2012), pp. 2713–2716Google Scholar
  32. 32.
    R.W. Gerchberg, A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)Google Scholar
  33. 33.
    K. Guo, D. Labate, Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 39(1), 298–318 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    B. Gao, X. Zhiqiang, Phaseless recovery using the Gauss-Newton method. IEEE Trans. Signal Process. 65(22), 5885–5896 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    K. Jaganathan, Y.C. Eldar, B. Hassibi, Phase retrieval: an overview of recent developments. arXiv preprint arXiv:1510.07713 (2015)
  36. 36.
    K. Jaganathan, Y.C. Eldar, B. Hassibi, Phase retrieval: an overview of recent developments, in Optical Compressive Imaging ed. by A. Stern (CRC Press, 2016) pp. 263–287Google Scholar
  37. 37.
    P. Jung, R. Kueng, D.G. Mixon, Derandomizing compressed sensing with combinatorial design. CoRR (2018)Google Scholar
  38. 38.
    P. Jung, F. Krahmer, D. Stoeger, B. Demixing, Deconvolution at near-optimal rate. IEEE Trans. Inf. Theory 64(2), 704–727 (2018)Google Scholar
  39. 39.
    R. Kimmel, M. Elad, D. Shaked, R. Keshet, I. Sobel, A variational framework for retinex. International Journal of Computer Vision 52(1), 7–23 (2003)CrossRefGoogle Scholar
  40. 40.
    R. Kueng, P. Jung, Robust nonnegative sparse recovery and the nullspace property of 0/1 measurements. IEEE Trans. Inf. Theory 64(2), 689–703 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    F. Krahmer, C. Kruschel, M. Sandbichler, Total variation minimization in compressed sensing, in Compressed Sensing and its Applications (Springer, 2017), pp. 333–358Google Scholar
  42. 42.
    G. Kutyniok, D. Labate, Shearlets: Multiscale analysis for multivariate data. Springer Science & Business Media (2012)Google Scholar
  43. 43.
    E.H. Land, The retinex. Am. Sci. 52(2), 247–264 (1964)Google Scholar
  44. 44.
    L. Weizhi, W. Li, K. Kpalma, J. Ronsin, Compressed sensing performance of random Bernoulli matrices with high compression ratio. IEEE Signal Process. Lett. 22(8), 1074–1078 (2015)CrossRefGoogle Scholar
  45. 45.
    X. Li, S. Ling, T. Strohmer, K. Wei, Rapid, robust, and reliable blind deconvolution via nonconvex optimization. Appl. Comput. Harmon. Anal. 1–49 (2018)Google Scholar
  46. 46.
    E.H. Land, J.J. McCann, Lightness and retinex theory. J. Opt. Soc. Am. 61(1), 1 (1971)CrossRefGoogle Scholar
  47. 47.
    S. Ling, T. Strohmer, Self-calibration and biconvex compressive sensing. Inverse Probl. 31(11) (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    S. Ling, T. Strohmer, Self-calibration and bilinear inverse problems via linear least squares. SIAM J. Imaging Sci. 11(1), 252–292 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    S. Marchesini, A unified evaluation of iterative projection algorithms for phase retrieval. Rev. Sci. Instrum. 78(1), 011301 (2007)MathSciNetCrossRefGoogle Scholar
  50. 50.
    L. Nickel, Phase retrieval in single detector cameras. Master’s thesis, WWU Münster (2018)Google Scholar
  51. 51.
    M.K. Ng, W. Wang, A total variation model for retinex. SIAM J. Imaging Sci. 4(1), 345–365 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    D. Needell, R. Ward, Near-optimal compressed sensing guarantees for total variation minimization. IEEE Trans. Image Process. 22(10), 3941–3949 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    D. Needell, R. Ward, Stable image reconstruction using total variation minimization. SIAM J. Imaging Sci. 6(2), 1035–1058 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    C. Poon, On the role of total variation in compressed sensing. SIAM J. Imaging Sci. 8(1), 682–720 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Y. Shechtman, A. Beck, Y.C. Eldar, Gespar: Efficient phase retrieval of sparse signals. IEEE Trans. Signal Process. 62(4), 928–938 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    M. Slawski, M. Hein, Non-negative least squares for high-dimensional linear models: Consistency and sparse recovery without regularization. Electron. J. Statist. 7, 3004–3056 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    R.J. Stokoe, P.A. Stockton, A. Pezeshki, R.A. Bartels, Theory and applications of structured light single pixel imaging, in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXV, vol. 10499 (International Society for Optics and Photonics, 2018), p. 104990EGoogle Scholar
  58. 58.
    G. Wang, G.B. Giannakis, Y.C. Eldar, Solving systems of random quadratic equations via truncated amplitude flow. IEEE Trans. Inf. Theory 64(2), 773–794 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    C.M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D.R. Smith, W.J. Padilla, Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 8(8), 605 (2014)CrossRefGoogle Scholar
  60. 60.
    M. Wang, X. Weiyu, A. Tang, A unique “nonnegative” solution to an underdetermined system: from vectors to matrices. IEEE Trans. Inform. Theory 59(3), 1007–1016 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    X. Zhang, M. Burger, S. Osher, A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1), 20–46 (2011)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martin Burger
    • 1
    Email author
  • Janic Föcke
    • 1
  • Lukas Nickel
    • 2
  • Peter Jung
    • 3
  • Sven Augustin
    • 4
  1. 1.Friedrich-Alexander Universität Erlangen-Nürnberg (FAU Erlangen-Nürnberg)ErlangenGermany
  2. 2.Westfälische-Wilhelms Universität Münster (WWU Münster)MünsterGermany
  3. 3.Technische Universität Berlin (TU Berlin)BerlinGermany
  4. 4.Humboldt-Universität zu Berlin (HU Berlin)BerlinGermany

Personalised recommendations