Advertisement

High-Throughput Techniques As Support for Knowledge-Based Spatial Conservation Prioritization in Mangrove Ecosystems

  • Véronique Helfer
  • Martin Zimmer
Chapter
Part of the Coastal Research Library book series (COASTALRL, volume 25)

Abstract

The conservation of functioning ecosystems worldwide is warranted by the need for reliable and sustainable provision of ecosystem services locally, regionally and globally. Mangroves provide numerous ecosystem services both to local human communities, e.g., coastal protection or food security, and to mankind worldwide, e.g., climate change-mitigation. Nonetheless they still lack protection in many places of occurrence. Here we base spatial prioritization and planning of mangrove conservation on functional biodiversity and service-relevant ecosystem processes, being studied through cutting-edge genetic and chemical analyses of sediments to unravel the links between biodiversity, biotic interactions, ecosystem processes and ecosystem services. We nonetheless recommend multidisciplinary approaches when planning protected area networks for the sustainable use and provision of ecosystem services and pledge for (i) considering and prioritizing societal, biological and economic values of mangroves, (ii) integrating adjacent ecosystems to maintain connectivity, and (iii) taking into account the spatial and temporal dynamics of mangrove ecosystems and their community composition under global change, i.e. changes in the spatial distribution of species and services over time. Beyond the example of mangroves and the turnover of organic matter in mangrove sediments described herein, our approach to spatial conservation prioritization and planning is applicable to any other ecosystems and their services.

Keywords

Environmental DNA Metabarcoding Metabolic fingerprinting Environmental metabolomics Biodiversity Ecosystem processes and services 

Notes

Acknowledgements

We thank Pierre Taberlet, Eric Coissac and Francesco Ficetola for constructive discussions and insights regarding the application of eDNA metabarcoding to mangrove research and conservation. Many thanks also to Christiane Hassenrück for insights into the application of up-to-date molecular techniques on microbial communities. We are grateful to Stefano Cannicci, Joe (Shing Yip) Lee, Peter K. L. Ng and Ingo Wehrtmann for crab identification.

References

  1. Abram F (2015) Systems-based approaches to unravel multi-species microbial community functioning. Comput Struct Biotechnol J 13:24–32PubMedCrossRefGoogle Scholar
  2. Adam E, Mutanga O, Rugege D (2010) Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetl Ecol Manag 18:281–296CrossRefGoogle Scholar
  3. Alongi DM (2009) The energetics of mangrove forests. Springer, New YorkGoogle Scholar
  4. Alongi DM (2014) Carbon cycling and storage in mangrove forests. Annu Rev Mar Sci 6:195–219CrossRefGoogle Scholar
  5. Andreote FD, Jiménez DJ, Chaves D, Dias ACF, Luvizotto DM, Dini-Andreote F et al (2012) The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS ONE 7:e38600.  https://doi.org/10.1371/journal.pone.0038600CrossRefPubMedPubMedCentralGoogle Scholar
  6. Asner GP, Martin RE, Knapp DE, Tupayachi R, Anderson CB, Sinca F, Vaughn NR, Llactayo W (2017) Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 355:385–389PubMedCrossRefGoogle Scholar
  7. Bakkar T, Helfer V, Himmelsbach R, Zimmer M (2017) Chemical changes in detrital matter upon digestive processes in a sesarmid crab feeding on mangrove leaf litter. Hydrobiologia.  https://doi.org/10.1007/s10750-017-3319-8
  8. Ball IR, Possingham HP, Watts M (2009) Marxan and relatives: software for spatial conservation prioritisation. In: Moilanen A, Wilson KA, Possingham HP (eds) Spatial conservation prioritization: quantitative methods and computational tools. Oxford University Press, Oxford, pp 185–195Google Scholar
  9. Barnes MA, Turner CR (2016) The ecology of environmental DNA and implications for conservation genetics. Conserv Genet 17:1–17CrossRefGoogle Scholar
  10. Basak P, Majumder NS, Nag S, Bhattacharyya A, Roy D, Chakraborty A, Sengupta S, Roy A, Mukherjee A, Pattanayak R, Ghosh A, Chattopadhyay D, Bhattacharyya M (2015) Spatiotemporal analysis of bacterial diversity in sediments of Sundarbans using parallel 16S rRNA gene tag sequencing. Microb Ecol 69:500–511PubMedCrossRefGoogle Scholar
  11. Basak P, Pramanik A, Sengupta S, Nag S, Bhattacharyya A, Roy D, Pattanayak R, Ghosh A, Chattopadhyay D, Bhattacharyya M (2016) Bacterial diversity assessment of pristine mangrove microbial community from Dhulibhashani, Sundarbans using 16S rRNA gene tag sequencing. Genomics Data 7:76–78PubMedCrossRefGoogle Scholar
  12. Baskin Y (1994) Ecosystem function of biodiversity. Bioscience 44:657–660CrossRefGoogle Scholar
  13. Berry D, Widder S (2014) Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:1–14CrossRefGoogle Scholar
  14. Bhattacharyya A, Majumder N, Basak P, Roy D, Nag S, Haldar A, Mukherjee S, Chattopadhyay D, Mitra S, Bhattacharyya M, Ghosh A (2015) Diversity and distribution of archaea in the mangrove sediment of Sundarbans. Archaea 2015, Article ID 968582, 14 p.  https://doi.org/10.1155/2015/968582
  15. Bohan DA, Vacher C, Tamaddoni-Nezhad A, Raybould A, Dumbrell AJ, Woodward G (2017) Next-generation global biomonitoring: large-scale, automated reconstruction of ecological networks. Trends Ecol Evol 32:477–487PubMedCrossRefGoogle Scholar
  16. Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S, Knapp M, Yu DW, de Bruyn M (2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29:358–367PubMedCrossRefGoogle Scholar
  17. Bouchez A, Pascault N, Chardon C, Bouvy M, Cecchi P, Lambs L, Herteman M, Fromard F, Got P, Leboulanger C (2013) Mangrove microbial diversity and the impact of trophic contamination. Mar Pollut Bull 66:39–46PubMedCrossRefGoogle Scholar
  18. Brose U, Hillebrand H (2016) Biodiversity and ecosystem functioning in dynamic landscapes. Philos Trans Royal Soc B Biol Sci 371(1694):20150267.  https://doi.org/10.1098/rstb.2015.0267CrossRefGoogle Scholar
  19. Buurman P, Roscoe R (2011) Different chemical composition of free light, occluded light and extractable SOM fractions in soils of Cerrado and tilled and untilled fields, Minas Gerais, Brazil: a pyrolysis–GC/MS study. Eur J Soil Sci 62:253–266.  https://doi.org/10.1111/j.1365-2389.2010.01327.xCrossRefGoogle Scholar
  20. Buurman P, Nierop KGJ, Kaal J, Senesi N (2009) Analytical pyrolysis and thermally assisted hydrolysis and methylation of EUROSOIL humic acid samples – a key to their source. Geoderma 150:10–22CrossRefGoogle Scholar
  21. Cannicci S, Burrows D, Fratini S, Smith UHI, Offenberg J, Dahdouh-Guebas F (2008) Faunal impact on vegetation structure and ecosystem function in mangrove forests: a review. Aquat Bot 89:186–200CrossRefGoogle Scholar
  22. Chambers LG, Guevara R, Boyer JN, Troxler TG, Davis SE (2016) Effects of salinity and inundation on microbial community structure and function in a mangrove peat soil. Wetlands 36:361–371.  https://doi.org/10.1007/s13157-016-0745-8CrossRefGoogle Scholar
  23. Chan KMA, Shaw MR, Cameron DR, Underwood EC, Daily GC (2006) Conserv Plan Ecosyst Serv 4:e379.  https://doi.org/10.1371/journal.pbio.0040379CrossRefGoogle Scholar
  24. Cimon-Morin J, Darveau M, Poulin M (2013) Fostering synergies between ecosystem services and biodiversity in conservation planning: a review. Biol Conserv 166:144–154CrossRefGoogle Scholar
  25. Cimon-Morin J, Darveau M, Poulin M (2014) Ecosystem services expand the biodiversity conservation toolbox – a response to deliège and neuteleers. Biol Conserv 172:219–220CrossRefGoogle Scholar
  26. Clare EL (2014) Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications. Evol Appl 7:1144–1157PubMedPubMedCentralCrossRefGoogle Scholar
  27. Crase B, Liedloff A, Vesk PA, Burgman MA, Wintle BA (2013) Hydroperiod is the main driver of the spatial pattern of dominance in mangrove communities. Glob Ecol Biogeogr 22:806–817CrossRefGoogle Scholar
  28. Creer S, Deiner K, Frey S, Porazinska D, Taberlet P, Thomas WK, Potter C, Bik HM (2016) The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol Evol 7:1008–1018CrossRefGoogle Scholar
  29. Das S, De TK, Mukherjee A, De M, Jana TK (2015) Influence of microbial composition on the carbon storage capacity of the mangrove soil at the land-ocean boundary in the Sundarban mangrove ecosystem. India Geomicrobiol J.  https://doi.org/10.1080/01490451.2015.1093567
  30. Dayton PK (1972) Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Antarctica. In: Parker BC (ed) Proceedings of the colloquium on conservation problems in Antarctica. Allen Press, Lawrence, pp 81–95Google Scholar
  31. De Groot RS (1992) Functions of nature: evaluation of nature in environmental planning, management and decision making. Wolters-Noordhoff, GroningenGoogle Scholar
  32. De Groot RS, Wilson MA, Boumans RMJ (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41:393–408CrossRefGoogle Scholar
  33. Deagle BE, Jarman SN, Coissac E, Pompanon F, Taberlet P (2014) DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biol Lett 10:20140562PubMedPubMedCentralCrossRefGoogle Scholar
  34. Deiner K, Bik HM, Mächler E et al (2017) Environmental DNA metabarcoding: Transforming how we survey animal and plantcommunities. Mol Ecol 26:5872–5895.  https://doi.org/10.1111/mec.14350CrossRefPubMedGoogle Scholar
  35. Deliège G, Neuteleers S (2014) Ecosystem services as an argument for biodiversity preservation: why its strength is its problem – reply to Cimon-Morin et al. Biol Conserv 172:218–218CrossRefGoogle Scholar
  36. Dittmar T, Hertkorn N, Kattner G, Lara RJ (2006) Mangroves, a major source of dissolved organic carbon to the oceans. Glob Biogeochem Cycles 20:GB1012.  https://doi.org/10.1029/2005GB002570CrossRefGoogle Scholar
  37. Donato D, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297CrossRefGoogle Scholar
  38. Du X, Zeisel SH (2013) Spectral deconvolution for gas chromatography mass spectrometry-based metabolomics: current status and future perspectives. Comput Struct Biotechnol J 4:e201201013Google Scholar
  39. Elith J, Leathwick JR (2009) Conservation prioritization using species distribution models. In: Moilanen A, Wilson KA, Possingham HP (eds) Spatial conservation prioritization: quantitative methods and computational tools. Oxford University Press, Oxford, pp 70–93Google Scholar
  40. Ellison AM, Farnsworth EJ (2001) Mangrove communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates, SunderlandGoogle Scholar
  41. Ellison AM, Farnsworth EJ, Merkt RE (1999) Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Glob Ecol Biogeogr 8:95–115CrossRefGoogle Scholar
  42. Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, Foster DR et al (2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 3:479–486CrossRefGoogle Scholar
  43. Ficetola GF, Miaud C, Pompanon F, Taberlet P (2008) Species detection using environmental DNA from water samples. Biol Lett 4:423–425PubMedPubMedCentralCrossRefGoogle Scholar
  44. Ficetola GF, Coissac E, Zundel S, Riaz T, Shehzad W, Bessière J, Taberlet P, Pompanon F (2010) An in silico approach for the evaluation of DNA barcodes. BMC Genomics 11:434PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ficetola GF, Pansu J, Bonin A, Coissac E, Giguet-Covex C, De Barba M, Gielly L, Lopes CM, Boyer F, Pompanon F, Rayé G, Taberlet P (2015) Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol Ecol Resour 15:543–556PubMedCrossRefGoogle Scholar
  46. Ficetola GF, Taberlet P, Coissac E (2016) How to limit false positives in environmental DNA and metabarcoding? Mol Ecol Resour 16:604–607PubMedCrossRefGoogle Scholar
  47. Foote AD, Thomsen PF, Sveegaard S, Wahlberg M, Kielgast J, Kyhn LA et al (2012) Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PLoS ONE 7:e41781.  https://doi.org/10.1371/journal.pone.0041781CrossRefPubMedPubMedCentralGoogle Scholar
  48. Fuentes M, Hidalgo C, González-Martín I, Hernández-Hierro JM, Govaerts B, Sayrre KD, Etchevers J (2012) NIR spectroscopy: an alternative for soil analysis. Commun Soil Sci Plant Anal 43:346–356CrossRefGoogle Scholar
  49. Gardham S, Hose GC, Stephenson S, Chariton AA (2014) DNA metabarcoding meets experimental ecotoxicology: advancing knowledge on the ecological effects of copper in freshwater ecosystems. Adv Ecol Res 51:79–104CrossRefGoogle Scholar
  50. Gerber L, Eliasson M, Trygg J, Moritz T, Sundberg B (2012) Multivariate curve resolution provides a high-throughput data processing pipeline for pyrolysis-gas chromatography/mass spectrometry. J Anal Appl Pyrolysis 95:95–100CrossRefGoogle Scholar
  51. Ghizelini AM, Mendonça-Hagler LCS, Macrae A (2012) Microbial diversity in Brazilian mangrove sediments – a mini review. Braz J Microbiol 43:1242–1254PubMedPubMedCentralCrossRefGoogle Scholar
  52. Giguet-Covex C, Pansu J, Arnaud F, Rey P-J, Griggo C, Gielly L, Domaizon I, Coissac E, David F, Choler P, Poulenard J, Taberlet P (2014) Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nat Commun 5:3211PubMedCrossRefGoogle Scholar
  53. Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159CrossRefGoogle Scholar
  54. Gomes NC, Cleary DF, Calado R, Costa R (2011) Mangrove bacterial richness. Commun Integr Biol 4:419–423PubMedPubMedCentralCrossRefGoogle Scholar
  55. Groom C, White NE, Mitchell N, Roberts JD, Mawson P (2016) Assessing the spatial ecology and resource use of a mobile and endangered species in an urbanized landscape using satellite telemetry and DNA faecal metabarcoding. Ibis 159:390–405CrossRefGoogle Scholar
  56. Guardiola M, Uriz MJ, Taberlet P, Coissac E, Wangensteen OS, Turon X (2015) Deep-sea, deep-sequencing: metabarcoding extracellular DNA from sediments of marine canyons. PLoS ONE 10:e0139633.  https://doi.org/10.1371/journal.pone.0139633CrossRefPubMedPubMedCentralGoogle Scholar
  57. Hand BK, Lowe WH, Kovach RP, Muhlfeld CC, Luikart G (2015) Landscape community genomics: understanding eco-evolutionary processes in complex environments. Trends Ecol Evol 30:161–168PubMedCrossRefGoogle Scholar
  58. Harborne AR, Mumby PJ, Micheli F, Perry CT, Dahlgren CP, Holmes KE, Brumbaugh DR (2006) The functional value of caribbean coral reef, seagrass and mangrove habitats to ecosystem processes. Adv Mar Biol 50:57–189PubMedCrossRefGoogle Scholar
  59. Helmuth B, Mieszkowska N, Moore P, Hawkins SJ (2006) Living on the edge of two changingworlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu Rev Ecol Evol Syst 37:373–404CrossRefGoogle Scholar
  60. Holguin G, Vazquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils 33:265–278CrossRefGoogle Scholar
  61. Hübner L, Pennings SC, Zimmer M (2015) Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: a multi-parameter approach. Oecologia 178:999–1015PubMedCrossRefGoogle Scholar
  62. Hutchison J, Manica A, Swetnam R, Balmford A, Spalding M (2014) Predicting global patterns in mangrove forest biomass. Conserv Lett 7:233–240CrossRefGoogle Scholar
  63. IPCC (2007) Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  64. Ismail Z, Sam CK, Yin WF, Chan KG (2017) Tropical mangrove swamp metagenome reveals unusual abundance of ecologically important microbes. Curr Sci 112:1698–1703CrossRefGoogle Scholar
  65. Jennerjahn TC, Ittekot V (2002) Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 89:23–30PubMedCrossRefGoogle Scholar
  66. Joly S, Jonathan Davies T, Archambault A, Bruneau A, Derry A, Kembel SW, Peres-Neto P, Vamosi J, Wheeler TA (2014) Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead. Mol Ecol Resour 14:221–232PubMedCrossRefGoogle Scholar
  67. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386CrossRefGoogle Scholar
  68. Kleinebecker T, Poelen MDM, Smolders AJP, Lamers LPM, Hölzel N (2013) Fast and inexpensive detection of total and extractable element concentrations in aquatic sediments using Near-Infrared Reflectance Spectroscopy (NIRS). PLoS ONE 8(7):e70517PubMedPubMedCentralCrossRefGoogle Scholar
  69. Komiyama A, Ong JE, Poungparn S (2008) Allometry, biomass, and productivity of mangrove forests: a review. Aquat Bot 89:128–137CrossRefGoogle Scholar
  70. Kristensen E (2007) Carbon balance in mangrove sediments: the driving processes and their controls. In: Tateda Y, Upstill-Goddard R, Goreau T, Alongi D, Nose A, Kristensen E, Wattayakorn G (eds) Greenhouse gas and carbon balances in mangrove coastal ecosystems. Maruzen, Tokyo, pp 61–78Google Scholar
  71. Kristensen E, Bouillon S, Dittmar T, Marchand C (2008) Organic carbon dynamics in mangrove ecosystems: a review. Aquat Bot 89:201–219CrossRefGoogle Scholar
  72. Lahoz-Monfort JJ, Guillera-Arroita G, Tingley R (2016) Statistical approaches to account for false-positive errors in environmental DNA samples. Mol Ecol Resour 16:673–685PubMedCrossRefGoogle Scholar
  73. Leathwick J, Moilanen A, Francis M, Elith J, Taylor P, Julian K, Hastie T, Duffy C (2008) Novel methods for the design and evaluation of marine protected areas in offshore waters. Conserv Lett 1:91–102CrossRefGoogle Scholar
  74. Liang J-B, Chen Y-Q, Lan C-Y, Tam NFY, Zan Q-J, Huang L-N (2007) Recovery of novel bacterial diversity from mangrove sediment. Mar Biol 150:739–747CrossRefGoogle Scholar
  75. Lovelock CE (2008) Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems 11:342–354CrossRefGoogle Scholar
  76. Luo L, Gu JD (2016) Nutrient limitation status in a subtropical mangrove ecosystem revealed by analysis of enzymatic stoichiometry and microbial abundance for sediment carbon cycling. Int Biodeterior Biodegrad  https://doi.org/10.1016/j.ibiod.2016.04.023
  77. MacKenzie DJ, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255CrossRefGoogle Scholar
  78. Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M et al (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560CrossRefGoogle Scholar
  79. Millennium Ecosystem Assessment (2005) Millennium ecosystem assessment – ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC. 86 pGoogle Scholar
  80. Moilanen A (2012) Spatial conservation prioritization in data-poor areas of the world. Natureza Conservação 10:12–19CrossRefGoogle Scholar
  81. Moilanen A, Franco AMA, Early R, Fox R, Wintle B, Thomas CD (2005) Prioritising multiple-use landscapes for conservation: methods for large multi-species planning problems. Proc Royal Soc Lond B Biol Sci 272:1885–1891CrossRefGoogle Scholar
  82. Nogués-Bravo D (2009) Predicting the past distribution of species climatic niches. Glob Ecol Biogeogr 18:521–531CrossRefGoogle Scholar
  83. Parducci L, Jørgensen T, Tollefsrud MM, Elverland E, Alm T, Fontana SL et al (2012) Glacial survival of boreal trees in northern Scandinavia. Science 335:1083–1086PubMedCrossRefGoogle Scholar
  84. Pearman PB, Randin CF, Broennimann O, Vittoz P, van der Knaap WO, Engler R, Lay L, Zimmermann NE, Guisan A (2008) Prediction of plant species distributions across six millennia. Ecol Lett 11:357–369PubMedCrossRefGoogle Scholar
  85. Pedersen MW, Overballe-Petersen S, Ermini L, Sarkissian CD, Haile J, Hellstrom M et al (2015) Ancient and modern environmental DNA. Philos Trans Royal Soc B Biol Sci 370:20130383.  https://doi.org/10.1098/rstb.2013.0383CrossRefGoogle Scholar
  86. Pestana D, Pülmanns N, Nordhaus I, Diele K, Zimmer M (2017) The influence of crab burrows on sediment salinity in a Rhizophora- dominated mangrove forest in North Brazil during the dry season. Hydrobiologia.  https://doi.org/10.1007/s10750-017-3282-4
  87. Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316CrossRefGoogle Scholar
  88. Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Gretchen D, Castilla JC, Lubchenco J, Paine RT (1996) Challenges in the quest for keystones. Bioscience 46:609–620CrossRefGoogle Scholar
  89. Pullin AS, Knight TM (2003) Support for decision making in conservation practice: an evidence-based approach. J Nat Conserv 11:83–90CrossRefGoogle Scholar
  90. Pülmanns N, Nordhaus I, Diele K, Mehlig U (2015) Artificial crab burrows facilitate desalting of rooted mangrove sediment in a microcosm study. J Mar Sci Eng 3:539–559CrossRefGoogle Scholar
  91. Pülmanns N, Mehlig U, Nordhaus I, Saint-Paul U, Diele K (2016) Mangrove crab Ucides cordatus removal does not affect sediment parameters and stipule production in a one year experiment in Northern Brazil. PLoS ONE 11:e0167375.  https://doi.org/10.1371/journal.pone.0167375CrossRefPubMedPubMedCentralGoogle Scholar
  92. Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol 38:127–145CrossRefGoogle Scholar
  93. Record S, Charney ND, Zakaria RM, Ellison AM (2013) Projecting global mangrove species and community distributions under climate change. Ecosphere 4:1–23CrossRefGoogle Scholar
  94. Reef R, Atwood TB, Samper-Villarreal J, Adame MF, Sampayo EM, Lovelock CE (2017) Using eDNA todetermine the source of organic carbon in seagrass meadows. Limnol Oceanogr 62:1254–1265.  https://doi.org/10.1002/lno.1049CrossRefGoogle Scholar
  95. Riaz T, Shehzad W, Viari A, Pompanon F, Taberlet P, Coissac E (2011) ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res 39:e145.  https://doi.org/10.1093/nar/gkr732CrossRefPubMedPubMedCentralGoogle Scholar
  96. Richards DR, Friess DA (2016) Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc Natl Acad Sci U S A 113:344–349PubMedCrossRefGoogle Scholar
  97. Sarker SK, Reeve R, Thompson J, Paul NK, Matthiopoulos J (2016) Are we failing to protect threatened mangroves in the Sundarbans world heritage ecosystem? Sci Rep 6:21234.  https://doi.org/10.1038/srep21234CrossRefPubMedPubMedCentralGoogle Scholar
  98. Schellekens J, Buurman P (2011) n-Alkane distributions as palaeoclimatic proxies in ombrotrophic peat: the role of decomposition and dominant vegetation. Geoderma 164:112–121CrossRefGoogle Scholar
  99. Schellekens J, Buurman P, Fraga I, Martínez-Cortizas A (2011) Holocene vegetation and hydrologic changes inferred from molecular vegetation markers in peat, Penido Vello (Galicia Spain). Palaeogeogr Palaeoclimatol Palaeoecol 299:56–69CrossRefGoogle Scholar
  100. Sengupta S, Pramanik A, Ghosh A, Bhattacharyya M (2015) Antimicrobial activities of actinomycetes isolated from unexplored regions of Sundarbans mangrove ecosystem. BMC Microbiol 15:1–16CrossRefGoogle Scholar
  101. Serafy JE, Shideler GS, Araújo RJ, Nagelkerken I (2015) Mangroves enhance reef fish abundance at the Caribbean regional scale. PLoS ONE 10:e0142022.  https://doi.org/10.1371/journal.pone.0142022CrossRefPubMedPubMedCentralGoogle Scholar
  102. Shang Y, Sikorski J, Bonkowski M, Fiore-Donno A-M, Kandeler E, Marhan S et al (2017) Inferring interactions in complex microbial communities from nucleotide sequence data and environmental parameters. PLoS ONE 12:e0173765.  https://doi.org/10.1371/journal.pone.0173765CrossRefPubMedPubMedCentralGoogle Scholar
  103. Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21:1794–1805PubMedCrossRefGoogle Scholar
  104. Spalding M, Kainuma M, Collins L (2010) World atlas of mangroves. Earthscan, London/Washington DCCrossRefGoogle Scholar
  105. Sustainable Development Solutions Network (2015) Indicators and a monitoring framework for the sustainable development goals launching a data revolution for the SDGsGoogle Scholar
  106. Sutherland WJ, Pullin AS, Dolman PM, Knight TM (2004) The need for evidence-based conservation. Trends Ecol Evol 19:305–308PubMedCrossRefGoogle Scholar
  107. Svancara LK, Brannon R, Scott JM, Groves CR, Noss RF, Pressey RL (2005) Policy-driven versus evidence-based conservation: a review of political targets and biological needs. Bioscience 55:989–995CrossRefGoogle Scholar
  108. Taberlet P, Coissac E, Hajibabaei M, Rieberg LH (2012a) Environmental DNA. Mol Ecol 21:1789–1793PubMedCrossRefGoogle Scholar
  109. Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012b) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050.  https://doi.org/10.1111/j.1365-294X.2012.05470.xCrossRefPubMedGoogle Scholar
  110. Thatoi H, Behera, Mishra RR (2013) Ecological role and biotechnological potential of mangrove fungi: a review. Mycology 4:54–71Google Scholar
  111. Thomsen PF, Willerslev E (2015) Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18CrossRefGoogle Scholar
  112. Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M, Gilbert MTP, Orlando L, Willerslev E (2012) Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol 21:2565–2573PubMedCrossRefGoogle Scholar
  113. Tolu J, Gerber L, Boily J-F, Bindler R (2015) High-throughput characterization of sediment organic matter by pyrolysis–gas chromatography/mass spectrometry and multivariate curve resolution: a promising analytical tool in (paleo)limnology. Anal Chim Acta 880:93–102PubMedCrossRefGoogle Scholar
  114. Tomlinson P (2016) The botany of mangroves. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9781139946575CrossRefGoogle Scholar
  115. Trivedi P, Anderson IC, Singh BK (2013) Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol 21:641–651PubMedCrossRefGoogle Scholar
  116. Ullah R, Yasir M, Khan I, Bibi F, Sohrab SS, Al-Ansari A, Al-Abbasi F, Al-Sofyani AA, Daur I, Lee SW, Azhar EI (2017) Comparative bacterial community analysis in relatively pristine and anthropogenically influenced mangrove ecosystems on the Red Sea. Can J Microbiol 63:649–660.  https://doi.org/10.1139/cjm-2016-0587CrossRefPubMedGoogle Scholar
  117. Vaiphasa C, Ongsomwang S, Vaiphasa T, Skidmore AK (2005) Tropical mangrove species discrimination using hyperspectral data: a laboratory study. Estuar Coast Shelf Sci 65:371–379CrossRefGoogle Scholar
  118. Valentini A, Pompanon F, Taberlet P (2009) DNA barcoding for ecologists. Trends Ecol Evol 24:110–117PubMedCrossRefGoogle Scholar
  119. van der Werf GR, Morton DC, DeFries RS et al (2009) CO2 emissions from forest loss. Nat Geosci 2:737–738CrossRefGoogle Scholar
  120. van Dijk AH, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30:418–426PubMedCrossRefGoogle Scholar
  121. Vancampenhout K, Wouters K, De Vos B, Buurman P, Swennen R, Deckers J (2009) Differences in chemical composition of soil organic matter in natural ecosystems from different climatic regions – a pyrolysis–GC/MS study. Soil Biol Biochem 41:568–579CrossRefGoogle Scholar
  122. Viant MR, Sommer U (2013) Mass spectrometry based environmental metabolomics: a primer and review. Metabolomics 9:S144–S158CrossRefGoogle Scholar
  123. Vidhya R, Vijayasekaran D, Ahamed Farook M, Jai S, Rohini M, Sinduja A (2014) Improved classification of mangroves health status using hyperspectral remote sensing data. ISPRS Int Archiv Photogramm Remote Sens Spat Inf Sci XL-8:667–670CrossRefGoogle Scholar
  124. Vo QT, Kuenzer C, Vo QM, Moder F, Oppelt N (2012) Review of valuation methods for mangrove ecosystem services. Ecol Indic 23:431–446CrossRefGoogle Scholar
  125. Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ, Lonsdorf EV, Allan GJ, DiFazio SP, Potts BM et al (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523PubMedCrossRefGoogle Scholar
  126. Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MTP, Shapiro B, Bunce M, Wiuf C, Gilichinsky DA, Alan Cooper A (2003) Diverse plant and animal genetic records from holocene and pleistocene sediments. Science 300:791–795PubMedCrossRefGoogle Scholar
  127. Willerslev E, Davison J, Moora M et al (2014) Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506:47–51PubMedCrossRefGoogle Scholar
  128. Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482CrossRefGoogle Scholar
  129. Wunderlich AC, Pinheiro MAA, Rodrigues AMT (2008) Biologia do caranguejo-uçá, Ucides cordatus (Crustacea: Decapoda: Brachyura), na Baía da Babitonga, Santa Catar Santa Catarina, Brasil. Rev Bras Zool 25:188–198CrossRefGoogle Scholar
  130. Zhang C, Kovacs JM, Liu Y, Flores-Verdugo F, Flores-de-Santiago F (2014) Separating mangrove species and conditions using laboratory hyperspectral data: a case study of a degraded mangrove forest of the Mexican Pacific. Remote Sens 6:11673–11688CrossRefGoogle Scholar
  131. Zimmer M (2017) Detritus. In: Jorgensen SE, Fath BD (eds) Encyclopedia of ecology, 2nd edn. Elsevier, Oxford. (in press)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of EcologyLeibniz Centre for Tropical Marine ResearchBremenGermany
  2. 2.University of Bremen, Faculty 02 Biology/ChemistryBremenGermany
  3. 3.IUCN-SSC Mangrove Specialist GroupBremenGermany

Personalised recommendations