Network Characterization of Lattice-Based Modular Robots with Neighbor-to-Neighbor Communications

  • André Naz
  • Benoît Piranda
  • Thadeu Tucci
  • Seth Copen Goldstein
  • Julien Bourgeois
Chapter
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 6)

Abstract

Modular robots form autonomous distributed systems in which modules use communications to coordinate their activities in order to achieve common goals. The complexity of distributed algorithms is generally expressed as a function of network properties, e.g., the number of nodes, the number of links and the radius/diameter of the system. In this paper, we characterize the networks of some lattice-based modular robots which use only neighbor-to-neighbor communications. We demonstrate that they form sparse and large-diameter networks. Additionally, we provide tight bounds for the radius and the diameter of these networks. We also show that, because of the huge diameter and the huge average distance of massive-scale lattice-based networks, complex distributed algorithms for programmable matter pose a significant design challenge. Indeed, communications over a large number of hops cause, for instance, latency and reliability issues.

Notes

Acknowledgements

This work has been funded by the Labex ACTION program (contract ANR-11-LABX-01-01) and ANR/RGC (contracts ANR-12-IS02-0004-01 and 3-ZG1F) and ANR (contract ANR-2011-BS03-005).

References

  1. 1.
    Albert, R., Jeong, H., Barabási, A.L.: Internet: diameter of the world-wide web. Nature 401(6749), 130–131 (1999)CrossRefGoogle Scholar
  2. 2.
    Barrenetxea, G., Berefull-Lozano, B., Vetterli, M.: Lattice networks: capacity limits, optimal routing, and queueing behavior. IEEE/ACM Trans. Netw. (TON) 14(3), 492–505 (2006)CrossRefGoogle Scholar
  3. 3.
    Barthélemy, M.: Spatial networks. Phys. Rep. 499(1), 1–101 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bhalla, N., Jacob, C.: A framework for analyzing and creating self-assembling systems. In: 2007 IEEE Swarm Intelligence Symposium, pp. 281–288. IEEE (2007)Google Scholar
  5. 5.
    Bourgeois, J., Piranda, B., Naz, A., Lakhlef, H., Boillot, N., Mabed, H., Douthaut, D., Tucci, T.: Programmable matter as a cyber-physical conjugation. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. IEEE, Budapest, Hungary (2016)Google Scholar
  6. 6.
    Braden, R.: Requirements for Internet Hosts – Communication Layers. RFC 1122, RFC Editor (1989)Google Scholar
  7. 7.
    Cardozo, T.B., Silva, A.P.C., Vieira, A.B., Ziviani, A.: On the end-to-end connectivity evolution of the internetGoogle Scholar
  8. 8.
    Di Ianni, M., Gualà, L., Rossi, G.: Reducing the diameter of a unit disk graph via node addition. Inf. Process. Lett. 115(11), 845–850 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ellis, R.B., Martin, J.L., Yan, C.: Random geometric graph diameter in the unit disk with p metric. In: International Symposium on Graph Drawing, pp. 167–172. Springer (2004)Google Scholar
  10. 10.
    Garcia, R.F.M., Schultz, U.P., Stoy, K.: On the efficiency of local and global communication in modular robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009. IROS 2009, pp. 1502–1508. IEEE (2009)Google Scholar
  11. 11.
    Garcia, R.F.M., Stoy, K., Christensen, D.J., Lyder, A.: A self-reconfigurable communication network for modular robots. In: Proceedings of the 1st international conference on Robot communication and coordination, p. 23. IEEE Press (2007)Google Scholar
  12. 12.
    Gilpin, K., Kotay, K., Rus, D., Vasilescu, I.: Miche: modular shape formation by self-disassembly. Int. J. Robot. Res. 27(3–4), 345–372 (2008)CrossRefGoogle Scholar
  13. 13.
    Goldstein, S.C., Mowry, T.C.: Claytronics: A scalable basis for future robots. In: RoboSphere. Moffett Field, CA (2004)Google Scholar
  14. 14.
    Goldstein, S.C., Mowry, T.C.: Claytronics: An instance of programmable matter. In: Wild and Crazy Ideas Session of ASPLOS. Boston, MA (2004)Google Scholar
  15. 15.
    Hayes, B.: Graph theory in practice: Part ii. Am. Sci. 88(2), 104–109 (2000)CrossRefGoogle Scholar
  16. 16.
    Jennings, E.H., Okino, C.M.: On the diameter of sensor networks. In: Aerospace Conference Proceedings, 2002, vol. 3, pp. 3–1211. IEEE (2002)Google Scholar
  17. 17.
    Jin, S., Bestavros, A.: Small-world characteristics of internet topologies and implications on multicast scaling. Comput. Netw. 50(5), 648–666 (2006)CrossRefMATHGoogle Scholar
  18. 18.
    Karagozler, M.E., Goldstein, S.C., Reid, J.R.: Stress-driven mems assembly+ electrostatic forces = 1mm diameter robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009, pp. 2763–2769 (2009)Google Scholar
  19. 19.
    Kirby, B.T., Ashley-Rollman, M., Goldstein, S.C.: Blinky blocks: a physical ensemble programming platform. CHI ’11 Extended Abstracts on Human Factors in Computing Systems. CHI EA ’11, pp. 1111–1116. ACM, New York, NY, USA (2011)Google Scholar
  20. 20.
    Latapy, M., Magnien, C.: Measuring fundamental properties of real-world complex networks (2006). arXiv:cs/0609115
  21. 21.
    Naz, A., Piranda, B., Goldstein, S.C., Bourgeois, J.: ABC-Center: Approximate-center election in modular robots. In: IROS 2015, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2951–2957. Hamburg, Germany (2015)Google Scholar
  22. 22.
    Naz, A., Piranda, B., Goldstein, S.C., Bourgeois, J.: Approximate-centroid election in large-scale distributed embedded systems. In: AINA 2016, 30th IEEE International Conference on Advanced Information Networking and Applications, pp. 548–556. IEEE, Crans-Montana, Switzerland (2016)Google Scholar
  23. 23.
    Naz, A., Piranda, B., Goldstein, S.C., Bourgeois, J.: A time synchronization protocol for modular robots. In: PDP 2016, 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, pp. 109–118. IEEE, Heraklion Crete, Greece (2016)Google Scholar
  24. 24.
    Oung, R., DAndrea, R.: The distributed flight array. Mechatronics 21(6), 908–917 (2011)CrossRefGoogle Scholar
  25. 25.
    Piranda, B., Bourgeois, J.: Geometrical study of a quasi-spherical module for building programmable matter. In: DARS 2016, 13th Internatinal Symposium on Distributed Autonomous Robotic Systems. Springer (2016)Google Scholar
  26. 26.
    Piranda, B., Laurent, G.J., Bourgeois, J., Clévy, C., Möbes, S., Le Fort-Piat, N.: A new concept of planar self-reconfigurable modular robot for conveying microparts. Mechatronics 23(7), 906–915 (2013)CrossRefGoogle Scholar
  27. 27.
    Reynolds, J.K., Postel, J.: Assigned Numbers. RFC 1700, RFC Editor (1994)Google Scholar
  28. 28.
    Suh, J.W., Homans, S.B., Yim, M.: Telecubes: Mechanical design of a module for self-reconfigurable robotics. In: IEEE International Conference on Robotics and Automation, Proceedings. ICRA’02, vol. 4, pp. 4095–4101. IEEE (2002)Google Scholar
  29. 29.
    The Internet Assigned Numbers Authority (IANA): Internet protocol version 4 (IPv4) parameters (2016). http://www.iana.org/assignments/ip-parameters/ip-parameters.xhtml
  30. 30.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)CrossRefMATHGoogle Scholar
  31. 31.
    Zhao, Y., Chen, Y., Li, B., Zhang, Q.: Hop id: a virtual coordinate based routing for sparse mobile ad hoc networks. IEEE Trans. Mobile Comput. 6(9), 1075–1089 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • André Naz
    • 1
  • Benoît Piranda
    • 1
  • Thadeu Tucci
    • 1
  • Seth Copen Goldstein
    • 2
  • Julien Bourgeois
    • 1
  1. 1.FEMTO-ST Institute UMR CNRS 6174University of Bourgogne Franche-Comte (UBFC)MontbeliardFrance
  2. 2.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations