Communication-Restricted Exploration for Search Teams

  • Elizabeth A. Jensen
  • London Lowmanstone
  • Maria Gini
Chapter
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 6)

Abstract

Exploring an unknown environment comes with risks and complications, and in some cases an environment may be too dangerous for humans to explore, but immediate exploration is critical, as in the aftermath of an earthquake. Robots, however, can be deployed to seek out points of interest and report back to the waiting human operators. One aspect of a disaster scenario is that communication is often more limited than we are accustomed to in everyday life, so these robots cannot rely on having constant contact with the outside world, or even with all other robots in the environment. In this paper, we present two algorithms for a small team of robots to explore an unknown environment, and use both simulation and experiments with physical robots to demonstrate the algorithms’ performance. We provide proofs of correctness and guarantee full coverage of the environment, even with attrition.

References

  1. 1.
    Batalin, M.A., Sukhatme, G.S.: The design and analysis of an efficient local algorithm for coverage and exploration based on sensor network deployment. IEEE Trans. Robot. 23(4), 661–675 (2007).  https://doi.org/10.1109/TRO.2007.903809
  2. 2.
    Birk, A., Carpin, S.: Rescue robotics - a crucial milestone on the road to autonomous systems. Adv. Robot. 20(5), 595–605 (2006)Google Scholar
  3. 3.
    Brass, P., Cabrera-Mora, F., Gasparri, A., Xiao, J.: Multirobot tree and graph exploration. Trans. Robot. 27(4), 707–717 (2011).  https://doi.org/10.1109/TRO.2011.2121170
  4. 4.
    Burgard, W., Moors, M., Stachniss, C., Schneider, F.E.: Coordinated multi-robot exploration. IEEE Trans. Robot. 21(3), 376–386 (2005).  https://doi.org/10.1109/TRO.2004.839232 CrossRefGoogle Scholar
  5. 5.
    Choset, H.: Coverage for robotics – a survey of recent results. Ann. Math. Artif. Intell. 31, 113–126 (2001).  https://doi.org/10.1023/A:1016639210559 CrossRefMATHGoogle Scholar
  6. 6.
    ClearpathRobotics: Jackal ugv. Technical report (2015)Google Scholar
  7. 7.
    Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004).  https://doi.org/10.1109/TRA.2004.824698 CrossRefGoogle Scholar
  8. 8.
    Dirafzoon, A., Emrani, S., Salehizadeh, S.M.A., Menhaj, M.B.: Coverage control in unknown environments using neural networks. Artif. Intell. Rev. 237–255 (2012)Google Scholar
  9. 9.
    Fazli, P., Davoodi, A., Pasquier, P., Mackworth, A.K.: Complete and robust cooperative robot area coverage with limited range. In: IEEE/RSJ Int’l Conference on Intelligent Robots and Systems (IROS), pp. 5577–5582. IEEE (2010)Google Scholar
  10. 10.
    Gage, D.W.: Command control for many-robot systems. In: 19th Annual AUVS Technical Symposium, pp. 22–24 (1992)Google Scholar
  11. 11.
    Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Auton. Syst. 61(12), 1258–1276 (2013)CrossRefGoogle Scholar
  12. 12.
    Howard, A., Mataric, M.J., Sukhatme, G.S.: Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. In: Proceedings of the International Symposium on Distributed Autonomous Robotic Systems, pp. 299–308 (2002)Google Scholar
  13. 13.
    IPRE: Myro hardware. Technical report (2011)Google Scholar
  14. 14.
    Jensen, E.A., Gini, M.: Rolling dispersion for robot teams. In: Proceedings Int’l Joint Conference on Artificial Intelligence (IJCAI), pp. 2473–2479 (2013)Google Scholar
  15. 15.
    Khawaldah, M.A., Nuchter, A.: Enhanced frontier-based exploration for indoor environment with multiple robots. Adv. Robot. 29(10), 657–669 (2015)CrossRefGoogle Scholar
  16. 16.
    Koenig, S., Liu, Y.: Terrain coverage with ant robots: a simulation study. In: Proceedings Fifth Int’l Conference on Autonomous Agents, pp. 600–607. ACM, New York, NY, USA (2001). http://doi.acm.org/10.1145/375735.376463
  17. 17.
    Kurazume, R., Hirose, S.: An experimental study of a cooperative positioning system. Auton. Robot. 00, 43–52 (2000)CrossRefGoogle Scholar
  18. 18.
    Lee, S.K., Fekete, S.P., McLurkin, J.: Structured triangulation in multi-robot systems: Coverage, patrolling, voronoi partitions, and geodesic centers. Int. J. Robot. Res. 35(10), 1234–1260 (2016)CrossRefGoogle Scholar
  19. 19.
    Liu, B., Brass, P., Dousse, O., Nain, P., Towsley, D.: Mobility improves coverage of sensor networks. In: MobiHoc ’05: Proceedings 6th ACM Int’l Symposium on Mobile ad hoc Networking and Computing, pp. 300–308. ACM, New York, NY, USA (2005). http://doi.acm.org/10.1145/1062689.1062728
  20. 20.
    Ludwig, L., Gini, M.: Robotic swarm dispersion using wireless intensity signals. In: Proceedings Int’l Symposium on Distributed Autonomous Robotic Systems (DARS), pp. 135–144 (2006)Google Scholar
  21. 21.
    Ma, M., Yang, Y.: Adaptive triangular deployment algorithm for unattended mobile sensor networks. IEEE Trans. Comput. 56(7), 946–958 (2007).  https://doi.org/10.1109/TC.2007.1054
  22. 22.
    Mamei, M., Zambonelli, F.: Pervasive pheromone-based interaction with rfid tags. ACM Trans. Auton. Adapt. Syst. 2(2), 4 (2007).  https://doi.org/10.1145/1242060.1242061
  23. 23.
    McLurkin, J., Smith, J.: Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots. In: Proceedings Int’l Symposium on Distributed Autonomous Robotic Systems (DARS) (2004)Google Scholar
  24. 24.
    Murphy, R.R.: Disaster Robotics. The MIT Press (2014)Google Scholar
  25. 25.
    O’Hara, K.J., Walker, D.B., Balch, T.R.: Physical path planning using a pervasive embedded network. IEEE Trans. Robot. 24(3), 741–746 (2008).  https://doi.org/10.1109/TRO.2008.919303 CrossRefGoogle Scholar
  26. 26.
    Rekleitis, I., Dudek, G., Milios, E.: Multi-robot exploration of an unknown environment, efficiently reducing the odometry error. In: Proceedings Int’l Joint Conference on Artificial Intelligence (IJCAI), vol. 2, pp. 1340–1345. Morgan Kaufmann Publishers, Inc., Nagoya, Japan (1997)Google Scholar
  27. 27.
    Rooker, M.N., Birk, A.: Multi-robot exploration under the constraints of wireless networking. Control Eng. Pract. 15(4), 435–445 (2007)CrossRefGoogle Scholar
  28. 28.
    Stachniss, C., Burgard, W.: Exploring unknown environments with mobile robots using coverage maps. In: Proceedings Int’l Joint Conference on Artificial Intelligence (IJCAI) (2003)Google Scholar
  29. 29.
    Stump, E., Jadbabaie, A., Kumar, V.: Connectivity management in mobile robot teams. In: Proceedings IEEE Int’l Conference on Robotics and Automation (ICRA), pp. 1525–1530 (2008).  https://doi.org/10.1109/ROBOT.2008.4543418
  30. 30.
    Viet, H.H., Dang, V.H., Choi, S.: Bob: an online coverage approach for multi-robot systems. Appl. Intell. 42(2), 157–173 (2015)CrossRefGoogle Scholar
  31. 31.
    Wurm, K.M., Stachniss, C., Burgard, W.: Coordinated multi-robot exploration using a segmentation of the environment. In: Proceedings IEEE/RSJ Int’l Conference on Intelligent Robots and Systems, pp. 1160–1165 (2008).  https://doi.org/10.1109/IROS.2008.4650734

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Elizabeth A. Jensen
    • 1
  • London Lowmanstone
    • 1
  • Maria Gini
    • 1
  1. 1.University of MinnesotaMinneanapolisUSA

Personalised recommendations