Distributed Laplacian Eigenvalue and Eigenvector Estimation in Multi-robot Systems

Chapter
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 6)

Abstract

In many multi-robot systems applications, obtaining the spectrum and the eigenvectors of the Laplacian matrix provides very useful information. For example, the second smallest eigenvalue, and the corresponding eigenvector, can be used for connectivity maintenance (see for example Freeman et al., Stability and convergence properties of dynamic average consensus estimators, 2006, [5]). Moreover, as shown in Zareh et al. (Decentralized biconnectivity conditions in multi-robot systems, 2016, [22], Enforcing biconnectivity in multi-robot systems, 2016, [23]), the third smallest eigenvalue provides a metric for ensuring robust connectivity in the presence of single robot failures. In this paper, we introduce a novel decentralized gradient based protocol to estimate the eigenvalues and the corresponding eigenvectors of the Laplacian matrix. The most significant advantage of this method is that there is no limit on the multiplicity of the eigenvalues. Simulations show the effectiveness of the theoretical findings.

References

  1. 1.
    Bapat, R.B., Pati, S.: Algebraic connectivity and the characteristic set of a graph. Linear Multilinear Algebra 45(2–3), 247–273 (1998)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bapat, R.B., Lal, A.K., Pati, S.: On algebraic connectivity of graphs with at most two points of articulation in each block. Linear Multilinear Algebra 60(4), 415–432 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Fiedler, M.: Algebraic connectivity of graphs. Czechoslov. Math. J. 23(2), 298–305 (1973)MathSciNetMATHGoogle Scholar
  4. 4.
    Franceschelli, M., Gasparri, A., Giua, A., Seatzu, C.: Decentralized estimation of Laplacian eigenvalues in multi-agent systems. Automatica 49(4), 1031–1036 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Freeman, R., Yang, P., Lynch, K.: Stability and convergence properties of dynamic average consensus estimators. In: 2006 45th IEEE Conference on Decision and Control, pp. 338–343 (2006).  https://doi.org/10.1109/CDC.2006.377078
  6. 6.
    Guo, J.M.: The Laplacian spectral radius of a graph under perturbation. Comput. Math. Appl. 54(5), 709–720 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)Google Scholar
  8. 8.
    Kibangou, A.Y., et al.: Distributed estimation of Laplacian eigenvalues via constrained consensus optimization problems. Syst. Control Lett. 80, 56–62 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kirkland, S., Fallat, S.: Perron components and algebraic connectivity for weighted graphs. Linear Multilinear Algebra 44(2), 131–148 (1998)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kirkland, S., Rocha, I., Trevisan, V.: Algebraic connectivity of k-connected graphs. Czechoslov. Math. J. 65(1), 219–236 (2015)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Olfati-Saber, R., Shamma, J.S.: Consensus filters for sensor networks and distributed sensor fusion. In: 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC’05, pp. 6698–6703. IEEE (2005)Google Scholar
  13. 13.
    Olfati-Saber, R., Fax, A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)CrossRefMATHGoogle Scholar
  14. 14.
    Sabattini, L., Chopra, N., Secchi, C.: Decentralized connectivity maintenance for cooperative control of mobile robotic systems. Int. J. Robot. Res. 32(12), 1411–1423 (2013)CrossRefGoogle Scholar
  15. 15.
    Tran, T.M.D., Kibangou, A.Y.: Consensus-based distributed estimation of Laplacian eigenvalues of undirected graphs. In: 12th Biannual European Control Conference (ECC 2013), pp. 227–232 (2013)Google Scholar
  16. 16.
    Yang, P., Freeman, R.A., Gordon, G.J., Lynch, K.M., Srinivasa, S.S., Sukthankar, R.: Decentralized estimation and control of graph connectivity for mobile sensor networks. Automatica 46(2), 390–396 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Zareh, M.: Consensus in multi-agent systems with time-delays. Ph.D. thesis, University of Cagliari (2015)Google Scholar
  18. 18.
    Zareh, M., Seatzu, C., Franceschelli, M.: Consensus of second-order multi-agent systems with time delays and slow switching topology. In: 2013 10th IEEE International Conference on Networking, Sensing and Control (ICNSC), pp. 269–275 (2013).  https://doi.org/10.1109/ICNSC.2013.6548749
  19. 19.
    Zareh, M., Seatzu, C., Franceschelli, M.: Consensus on the average in arbitrary directed network topologies with time-delays. In: 4th IFAC Workshop on Distributed Estimation and Control in Networked Systems, pp. 342–347 (2013).  https://doi.org/10.3182/20130925-2-DE-4044.00022
  20. 20.
    Zareh, M., Dimarogonas, D.V., Franceschelli, M., Johansson, K.H., Seatzu, C.: Consensus in multi-agent systems with non-periodic sampled-data exchange and uncertain network topology. In: 2014 International Conference on Control, Decision and Information Technologies (CoDIT), pp. 411–416. IEEE (2014)Google Scholar
  21. 21.
    Zareh, M., Dimarogonas, D.V., Franceschelli, M., Johansson, K.H., Seatzu, C.: Consensus in multi-agent systems with second-order dynamics and non-periodic sampled-data exchange. In: Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), pp. 1–8. IEEE (2014)Google Scholar
  22. 22.
    Zareh, M., Secchi, C., Sabattini, L.: Decentralized biconnectivity conditions in multi-robot systems. In: IEEE International Conference on Decision and Control (CDC). IEEE (2016)Google Scholar
  23. 23.
    Zareh, M., Secchi, C., Sabattini, L.: Enforcing biconnectivity in multi-robot systems. In: IEEE International Conference on Decision and Control (CDC). IEEE (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mehran Zareh
    • 1
  • Lorenzo Sabattini
    • 1
  • Cristian Secchi
    • 1
  1. 1.Department of Sciences and Methods for Engineering (DISMI)University of Modena and Reggio EmiliaModena and Reggio EmiliaItaly

Personalised recommendations