A Probabilistic Topological Approach to Feature Identification Using a Stochastic Robotic Swarm

  • Ragesh K. Ramachandran
  • Sean Wilson
  • Spring Berman
Chapter
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 6)

Abstract

This paper presents a novel automated approach to quantifying the topological features of an unknown environment using a swarm of robots with local sensing and limited or no access to global position information. The robots randomly explore the environment and record a time series of their estimated position and the covariance matrix associated with this estimate. After the robots’ deployment, a point cloud indicating the free space of the environment is extracted from their aggregated data. Tools from topological data analysis, in particular the concept of persistent homology, are applied to a subset of the point cloud to construct barcode diagrams, which are used to determine the numbers of different types of features in the domain. We demonstrate that our approach can correctly identify the number of topological features in simulations with zero to four features and in multi-robot experiments with one to three features.

Keywords

Unlocalized robotic swarm Stochastic robotics Mapping GPS-denied environments Topological data analysis Algebraic topology 

Notes

Acknowledgements

R.K.R. thanks Dr. Subhrajit Bhattacharya for his valuable input on this work. This work was supported by NSF Award CMMI-1363499 and DARPA Young Faculty Award D14AP00054.

References

  1. 1.
    Adams, H., Carlsson, G.: On the nonlinear statistics of range image patches. SIAM J. Imaging Sci. 2(1), 110–117 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Adams, H., Tausz, A., Vejdemo-Johansson, M.: JavaPlex: a research software package for persistent (co)homology. In: Mathematical Software – ICMS, pp. 129–136. Springer, Berlin (2014)Google Scholar
  3. 3.
    Ahmed, M., Fasy, B.T., Wenk, C.: Local persistent homology based distance between maps. In: ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL), pp. 43–52 (2014)Google Scholar
  4. 4.
    Bhattacharya, S., Ghrist, R., Kumar, V.: Persistent homology for path planning in uncertain environments. IEEE Trans. Robot. 31(3), 578–590 (2015)CrossRefGoogle Scholar
  5. 5.
    Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chintakunta, H., Krim, H.: Distributed localization of coverage holes using topological persistence. IEEE Trans. Signal Process. 62(10), 2531–2541 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Choset, H., Nagatani, K.: Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization. IEEE Trans. Robot. Autom. 17, 125–137 (2001)CrossRefGoogle Scholar
  8. 8.
    Dirafzoon, A., Bozkurt, A., Lobaton, E.J.: Dynamic topological mapping with biobotic swarms (2015). CoRR arXiv:1507.03206
  9. 9.
    Edelsbrunner, H., Harer, J.L.: Persistent homology - a survey. Contemp. Math. 453, 257–282 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Edelsbrunner, H., Harer, J.L.: Computational Topology: An Introduction. American Mathematical Society, Providence, RI (2010)MATHGoogle Scholar
  11. 11.
    Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ghrist, R.: Elementary Applied Topology, 1st edn. Createspace, USA (2014)Google Scholar
  13. 13.
    Ghrist, R., Lipsky, D., Derenick, J., Speranzon, A.: Topological landmark-based navigation and mapping. University of Pennsylvania, Department of Mathematics, Technical Report Vol. 8 (2012)Google Scholar
  14. 14.
    Ghrist, R., Muhammad, A.: Coverage and hole-detection in sensor networks via homology. In: International Symposium on Information Processing in Sensor Networks (IPSN) (2005)Google Scholar
  15. 15.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, New York (2002)MATHGoogle Scholar
  16. 16.
    Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Springer, New York (2004)CrossRefMATHGoogle Scholar
  17. 17.
    Ma, Y., Fu, Y.: Manifold Learning Theory and Applications, 1st edn. CRC Press Inc., Boca Raton (2011)Google Scholar
  18. 18.
    Pokorny, F.T., Stork, J.A., Kragic, D.: Grasping objects with holes: a topological approach. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1100–1107 (2013)Google Scholar
  19. 19.
    Ramachandran, R.K., Elamvazhuthi, K., Berman, S.: An optimal control approach to mapping GPS-denied environments using a stochastic robotic swarm. In: International Symposium on Robotics Research (ISRR) (2015)Google Scholar
  20. 20.
    Ramaithitima, R., Whitzer, M., Bhattacharya, S., Kumar, V.: Automated creation of topological maps in unknown environments using a swarm of resource-constrained robots. IEEE Robot. Autom. Lett. 1(2), 746–753 (2016)CrossRefGoogle Scholar
  21. 21.
    Robertson, P., Angermann, M., Krach, B.: Simultaneous localization and mapping for pedestrians using only foot-mounted inertial sensors. In: International Conference on Ubiquitous Computing (Ubicomp), pp. 93–96 (2009)Google Scholar
  22. 22.
    Robinson, M.: Topological Signal Processing. Springer, Berlin (2014)CrossRefMATHGoogle Scholar
  23. 23.
    Skraba, P., Ovsjanikov, M., Chazal, F., Guibas, L.: Persistence-based segmentation of deformable shapes. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, pp. 45–52 (2010)Google Scholar
  24. 24.
    Thrun, S.: A probabilistic online mapping algorithm for teams of mobile robots. Int. J. Robot. Res. 20(5), 335–363 (2001)CrossRefGoogle Scholar
  25. 25.
    Thrun, S., Burgard, W.: Probabilistic Robotics. Intelligent Robotics and Autonomous Agents. MIT, Cambridge (2005)MATHGoogle Scholar
  26. 26.
    Wilson, S., Gameros, R., Sheely, M., Lin, M., Dover, K., Gevorkyan, R., Haberland, M., Bertozzi, A., Berman, S.: Pheeno, a versatile swarm robotic research and education platform. IEEE Robot. Autom. Lett. 1(2), 884–891 (2016)CrossRefGoogle Scholar
  27. 27.
    Zajic, T., Ravichandran, R.B., Mahler, R.P.S., Mehra, R.K., Noviskey, M.J.: Joint tracking and identification with robustness against unmodeled targets. Signal Process. Sens. Fusion Target Recognit. XII 5096, 279–290 (2003)CrossRefGoogle Scholar
  28. 28.
    Zomorodian, A.J., Ablowitz, M.J., Davis, S.H., Hinch, E.J., Iserles, A., Ockendon, J., Olver, P.J.: Topology for Computing (Cambridge Monographs on Applied and Computational Mathematics). Cambridge University Press, New York, NY (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ragesh K. Ramachandran
    • 1
  • Sean Wilson
    • 1
  • Spring Berman
    • 1
  1. 1.School for Engineering of Matter, Transport and EnergyArizona State UniversityTempeUSA

Personalised recommendations