Advertisement

Acute Abdomen-Induced Preterm Labor

  • Goran Augustin
Chapter

Abstract

The specific issue with acute abdomen during pregnancy is that many underlying conditions result in inflammation and infection which raise prostaglandin levels which are crucial for the normal progress of labor. Therefore, it is mandatory to stop the increased preterm production of prostaglandins. The only solution is early diagnosis and treatment of acute abdominal conditions during pregnancy. In addition to inflammation, abdominal trauma is also an issue. It can cause placental abruption and preterm labor. In addition to these two most common groups of the acute abdomen during pregnancy, other important topics are discussed. These include maternal and fetal stress as a result of any cause of acute abdomen during pregnancy and the problem of adequate perioperative nutrition. Inadequate maternal nutrition is present in some diseases with prolonged course before therapeutic interventions such as conservatively treated acute cholecystitis or acute pancreatitis. Prolonged inadequate postoperative nutrition is seen after many surgical procedures especially in those that require bowel resections or reoperations. Therefore, the underlying pathology should be diagnosed and treated early in the course of the disease, and additional measures for detection and prevention of preterm labor should be instituted as early as possible.

References

  1. 1.
    Ananth CV, Vintzileos A. Epidemiology of preterm birth and its clinical subtypes. J Matern Fetal Neonatal Med. 2006;19:773–82.CrossRefPubMedGoogle Scholar
  2. 2.
    Romero R, Gomez R, Mazor M, et al. The preterm labor syndrome. In: Elder MG, Romero R, Lamont R, editors. Preterm labor. New York: Churchill Livingstone; 1997. p. 29–49.Google Scholar
  3. 3.
    Liggins GC, Fairclough RJ, Grieves S, et al. Parturition in the sheep. Ciba Found Symp. 1977;47:5–30.Google Scholar
  4. 4.
    Sfakianaki AK, Norwitz E. Mechanisms of progesterone action in inhibiting prematurity. J Matern Fetal Neonatal Med. 2006;19:763–72.CrossRefPubMedGoogle Scholar
  5. 5.
    Garfield RE, Gasc JM, Baulieu E. Effects of the antiprogesterone RU 486 on preterm birth in the rat. Am J Obstet Gynecol. 1987;157:1281–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Meis PJ, Klebanoff M, Thom E, et al. Prevention of recurrent preterm delivery by 17 alpha–hydroxyprogesterone caproate. New Engl J Med. 2003;348:2379–85.CrossRefPubMedGoogle Scholar
  7. 7.
    Challis JRG, Matthews SG, Gibb W, et al. Endocrine and paracrine regulation of birth at term and preterm. Endocr Rev. 2000;21:514–50.PubMedGoogle Scholar
  8. 8.
    Garfield RE, Sims S, Daniel E. Gap junctions: their presence and necessity in myometrium during parturition. Science. 1977;198AD:958–60.CrossRefGoogle Scholar
  9. 9.
    Garfield RE, Sims SM, Kannan M, et al. Possible role of gap junctions in activation of myometrium during parturition. Am J Phys. 1978;235:C168–79.CrossRefGoogle Scholar
  10. 10.
    Balducci J, Risek B, Gilula N, et al. Gap junction formation in human myometrium: a key to preterm labor? Am J Obstet Gynecol. 1993;168:1609–15.CrossRefPubMedGoogle Scholar
  11. 11.
    Orsino A, Taylor CV, Lye S. Connexin-26 and connexin-43 are differentially expressed and regulated in the rat myometrium throughout late pregnancy and with the onset of labor. Endocrinology. 1996;137:1545–53.CrossRefPubMedGoogle Scholar
  12. 12.
    Ou CW, Orsino A, Lye S. Expression of connexin-43 and connexin-26 in the rat myometrium during pregnancy and labor is differentially regulated by mechanical and hormonal signals. Endocrinology. 1997;138:5398–407.CrossRefPubMedGoogle Scholar
  13. 13.
    Cook JL, Zaragoza DB, Sung D, et al. Expression of myometrial activation and stimulation genes in a mouse model of preterm labor: Myometrial activation, stimulation, and preterm labor. Endocrinology. 2000;141:1718–28.CrossRefPubMedGoogle Scholar
  14. 14.
    Lye SJ, Nicholson BJ, Mascarenhas M, et al. Increased expression of connexin-43 in the rat myometrium during labor is associated with an increase in the plasma estrogen : progesterone ratio. Endocrinology. 1993;132:2380–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Petrocelli T, Lye S. Regulation of transcripts encoding the myometrial gap junction protein, connexin-43, by estrogen and progesterone. Endocrinology. 1993;133:284–90.CrossRefPubMedGoogle Scholar
  16. 16.
    Lefebvre DL, Piersanti M, Bai X, et al. Myometrial transcriptional regulation of the gap junction gene, connexin-43. Reprod Fertil Dev. 1995;7:603–11.CrossRefPubMedGoogle Scholar
  17. 17.
    Lye S. The initiation and inhibition of labour: towards a molecular understanding. Semin Reprod Endocrinol. 1994;12:284–94.CrossRefGoogle Scholar
  18. 18.
    Lye SJ, Mitchell J, Nashman N, et al. Role of mechanical signals in the onset of term and preterm labor. Front Horm Res. 2001;27:165–78.CrossRefPubMedGoogle Scholar
  19. 19.
    Shynlova O, Oldenhof A, Dorogin A, et al. Myometrial apoptosis: activation of the caspase cascade in the pregnant rat myometrium at midgestation. Biol Reprod. 2006;74:839–49.CrossRefPubMedGoogle Scholar
  20. 20.
    Shynlova O, Kwong R, Lye S. Mechanical stretch regulates hypertrophic phenotype of the myometrium during pregnancy. Reproduction. 2010;139:247–53.CrossRefPubMedGoogle Scholar
  21. 21.
    Shynlova O, Mitchell JA, Tsampalieros A, et al. Progesterone and gravidity differentially regulate expression of extracellular matrix components in the pregnant rat myometrium. Biol Reprod. 2004;70:986–92.CrossRefPubMedGoogle Scholar
  22. 22.
    Shynlova O, Williams SJ, Draper H, et al. Uterine stretch regulates temporal and spatial expression of fibronectin protein and its alpha 5 integrin receptor in myometrium of unilaterally pregnant rats. Biol Reprod. 2007;77:880–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Tattersall M, Engineer N, Khanjani S, et al. Pro-labour myometrial gene expression: are preterm labour and term labour the same? Reproduction. 2008;135:569–79.CrossRefPubMedGoogle Scholar
  24. 24.
    Olson DM, Ammann C. Role of the prostaglandins in labour and prostaglandin receptor inhibitors in the prevention of preterm labour. Front Biosci. 2007;12:1329–43.CrossRefPubMedGoogle Scholar
  25. 25.
    Word RA, Li XH, Hnat M, et al. Dynamics of cervical remodeling during pregnancy and parturition: mechanisms and current concepts. Semin Reprod Med. 2007;25:69–79.CrossRefPubMedGoogle Scholar
  26. 26.
    Winkler M, Rath W. Changes in the cervical extracellular matrix during pregnancy and parturition. J Perinat Med. 1999;27:45–60.CrossRefPubMedGoogle Scholar
  27. 27.
    Sakamoto Y, Moran P, Bulmer J, et al. Macrophages and not granulocytes are involved in cervical ripening. J Reprod Immunol. 2005;66:161–73.CrossRefPubMedGoogle Scholar
  28. 28.
    Hassan SS, Romero R, Haddad R, et al. The transcriptome of the uterine cervix before and after spontaneous term parturition. Am J Obstet Gynecol. 2006;195:778–86.CrossRefPubMedGoogle Scholar
  29. 29.
    Sakamoto Y, Moran P, Searle R, et al. Interleukin-8 is involved in cervical dilatation but not in prelabour cervical ripening. Clin Exp Immunol. 2004;138:151–7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Törnblom SA, Klimaviciute A, Bystrom B, et al. Non-infected preterm parturition is related to increased concentrations of IL-6, IL-8 and MCP-1 in human cervix. Reprod Biol Endocrinol. 2005;3:39.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Roth J, Vogl T, Sorg C, et al. Phagocyte-specific S100 proteins: a novel group of proinflammatory molecules. Trends Immunol. 2003;24:155–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Havelock JC, Keller P, Muleba N, et al. Human myometrial gene expression before and during parturition. Biol Reprod. 2005;72:707–19.CrossRefPubMedGoogle Scholar
  33. 33.
    El Maradny E, Kanayama N, Halim A. The effect of interleukin-1 in rabbit cervical ripening. Eur J Obstet Gynecol Reprod Biol. 1995;60:75–80.CrossRefPubMedGoogle Scholar
  34. 34.
    Chwalisz K, Benson M, Scholz P, et al. Cervical ripening with the cytokines interleukin 8, interleukin 1 beta and tumour necrosis factor alpha in guinea-pigs. Hum Reprod. 1994;9:2173–81.CrossRefPubMedGoogle Scholar
  35. 35.
    Van der Burg B, Van der Saag P. Nuclear factor-kappa-B/steroid hormone receptor interactions as a functional basis of anti-inflammatory action of steroids in reproductive organs. Mol Hum Reprod. 1996;2:433–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Elliott CL, Brennand JE, Calder A. The effects of mifepristone on cervical ripening and labor induction in primigravidae. Obstet Gynecol. 1998;92:804–9.PubMedGoogle Scholar
  37. 37.
    Stenlund PM, Ekman G, Aedo A, et al. Induction of labor with mifepristone: a randomized, double-blind study versus placebo. Acta Obstet Gynecol Scand. 1999;78:793–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Lockwood CJ, Senyei AE, Dische M, et al. Fetal fibronectin in cervical and vaginal secretions as a predictor of preterm delivery. New Engl J Med. 1991;325:669–74.CrossRefPubMedGoogle Scholar
  39. 39.
    Iams JD, Casal D, McGregor J, et al. Fetal fibronectin improves the accuracy of diagnosis of preterm labor. Am J Obstet Gynecol. 1995;173:141–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Oshiro B, Edwin S, Silver R. Human fibronectin and human tenascin production in human amnion cells. J Soc Gynecol Invest. 1996;3:351A.Google Scholar
  41. 41.
    King L, MacDonald P, Casey M. Regulation of tissue inhibitor of metalloproteinase-1 (TIMP-1) in human amnion. J Soc Gynecol Invest. 1996;3:232A.CrossRefGoogle Scholar
  42. 42.
    Vadillo-Ortega F, Hernandez A, Gonzalez-Avila G, et al. Increased matrix metalloproteinase activity and reduced tissue inhibitor of metalloproteinases-1 levels in amniotic fluids from pregnancies complicated by premature rupture of membranes. Am J Obstet Gynecol. 1996;174:1371–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Maymon E, Romero R, Pacora P, et al. Evidence for the participation of interstitial collagenase (matrix metalloproteinase 1) in preterm premature rupture of membranes. Am J Obstet Gynecol. 2000;183:914–20.CrossRefPubMedGoogle Scholar
  44. 44.
    Athayde N, Edwin SS, Romero R, et al. A role for matrix metalloproteinase-9 in spontaneous rupture of the fetal membranes. Am J Obstet Gynecol. 1998;79:1248–53.CrossRefGoogle Scholar
  45. 45.
    Helmig BR, Romero R, Espinoza J, et al. Neutrophil elastase and secretory leukocyte protease inhibitor in prelabor rupture of membranes, parturition and intra-amniotic infection. J Matern Fetal Neonatal Med. 2002;12:237–46.CrossRefPubMedGoogle Scholar
  46. 46.
    Everts V, van der Zee E, Creemers L, et al. Phagocytosis and intracellular digestion of collagen, its role in turnover and remodelling. Histochem J. 1996;28:229–45.CrossRefPubMedGoogle Scholar
  47. 47.
    Bennett PR, Elder MG, Myatt L. The effects of lipoxygenase metabolites of arachidonic acid on human myometrial contractility. Prostaglandins. 1987;33:837–44.CrossRefPubMedGoogle Scholar
  48. 48.
    Wiqvist N, Lindblom B, Wikland M, et al. Prostaglandins and uterine contractility. Acta Obstet Gynecol Scand. 1983;113:23–9.CrossRefGoogle Scholar
  49. 49.
    Calder AA, Greer I. Pharmacological modulation of cervical compliance in the first and second trimesters of pregnancy. Semin Perinatol. 1991;15:162–72.PubMedGoogle Scholar
  50. 50.
    Rajabi M, Solomon S, Poole A. Hormonal regulation of interstitial collagenase in the uterine cervix of the pregnant guinea pig. Endocrinology. 1991;128:863–71.CrossRefPubMedGoogle Scholar
  51. 51.
    Mohan AR, Loudon JA, Bennett P. Molecular and biochemical mechanisms of preterm labour. Semin Fetal Neonatal. 2004;9:437–44.CrossRefGoogle Scholar
  52. 52.
    Myatt L, Lye S. Expression, localization and function of prostaglandin receptors in myometrium. Prostaglandins Leukot Essent Fat Acids. 2004;70:137–48.CrossRefGoogle Scholar
  53. 53.
    Olson D. The role of prostaglandins in the initiation of parturition. Best Pr Res Clin Obstet Gynaecol. 2003;17:717–30.CrossRefGoogle Scholar
  54. 54.
    Denison FC, Calder AA, Kelly R. The action of prostaglandin E2on the human cervix: stimulation of interleukin 8 and inhibition of secretory leucocyte protease inhibitor. Am J Obstet Gynecol. 1999;180:614–20.CrossRefPubMedGoogle Scholar
  55. 55.
    Yoshida M, Sagawa N, Itoh H, et al. Prostaglandin F(2alpha), cytokines and cyclic mechanical stretch augment matrix metalloproteinase-1 secretion from cultured human uterine cervical fibroblast cells. Mol Hum Reprod. 2002;8:861–7.CrossRefGoogle Scholar
  56. 56.
    Madsen G, Zakar T, Ku C, et al. Prostaglandins differentially modulate progesterone receptor-a and -B expression in human myometrial cells: evidence for prostaglandin-induced functional progesterone withdrawal. J Clin Endocrinol Metab. 2004;89:1010–3.CrossRefPubMedGoogle Scholar
  57. 57.
    Mercer BM, Goldenberg RL, Meis P, et al. The preterm prediction study: prediction of preterm premature rupture of membranes through clinical findings and ancillary testing. Am J Obstet Gynecol. 2000;183:738–45.CrossRefPubMedGoogle Scholar
  58. 58.
    Goldenberg RL, Culhane JF, Iams JD, et al. Preterm birth 1: epidemiology and causes of preterm birth. Lancet. 2008;371:75–84.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Offenbacher S, Katz V, Fertik G, et al. Periodontal infection as a possible risk factor for preterm low birthweight. J Periodontol. 1996;67:1103–13.CrossRefGoogle Scholar
  60. 60.
    Mueller-Heubach E, Rubinstein DN, Schwarz S. Histologic chorioamnionitis and preterm delivery in different patient populations. Obstet Gynecol. 1990;75:622–6.PubMedGoogle Scholar
  61. 61.
    Meis PJ, Goldenberg RL, Mercer B, et al. The preterm prediction study: significance of vaginal infections. Am J Obstet Gynecol. 1995;173:1231–5.CrossRefPubMedGoogle Scholar
  62. 62.
    Goldenberg RL, Hauth JC, Andrews W. Intrauterine infection and preterm delivery. New Engl J Med. 2000;342:1500–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Yoon BH, Romero R, Lim J, et al. The clinical significance of detecting Ureaplasma urealyticum by the polymerase chain reaction in the amniotic fluid of patients with preterm labor. Am J Obstet Gynecol. 2003;189:919–24.CrossRefPubMedGoogle Scholar
  64. 64.
    Cassell G, Andrews W, Hauth J, et al. Isolation of microorganisms from the chorioamnion is twice that from amniotic fluid at cesarean delivery in women with intact membranes. Am J Obstet Gynecol. 1993;168:424.Google Scholar
  65. 65.
    Galask RP, Varner MW, Rosemarie Petzold C, et al. Bacterial attachment to the chorioamniotic membranes. Am J Obstet Gynecol. 1984;148:915–28.CrossRefPubMedGoogle Scholar
  66. 66.
    Romero R, Mazor M. Infection and preterm labor. Clin Obstet Gynecol. 1988;31:553–84.CrossRefPubMedGoogle Scholar
  67. 67.
    Gonçalves LF, Chaiworapongsa T, Romero R. Intrauterine infection and prematurity. Ment Retard Dev Disabil Res Rev. 2002;8:3–13.CrossRefPubMedGoogle Scholar
  68. 68.
    Musilova I, Kutová R, Pliskova L, et al. Intraamniotic inflammation in women with preterm prelabor rupture of membranes. PLoS One. 2015;10:e0133929.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Romero R, Miranda J, Chaiworapongsa T, et al. Sterile intra-amniotic inflammation in a symptomatic patients with a sonographic short cervix: prevalence and clinical significance. J Matern Fetal Neonatal Med. 2015;28:1343–59.CrossRefGoogle Scholar
  70. 70.
    Hirsch E, Filipovich Y, Mahendroo M. Signaling via the type I IL-1 and TNF receptors is necessary for bacterially induced preterm labor in a murine model. Am J Obstet Gynecol. 2006;194:1334–40.CrossRefPubMedGoogle Scholar
  71. 71.
    Vanderhoeven JP, Bierle CJ, Kapur RP, et al. Group B streptococcal infection of the Choriodecidua induces dysfunction of the cytokeratin network in amniotic epithelium: a pathway to membrane weakening. PLoS Pathog. 2014;10:e1003920.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Bumishi CS, Norman J. Pathogenesis of spontaneous preterm birth. In: Creasy and Resnik’s maternal fetal medicine: principles and practice; 2014. p. 599–623.Google Scholar
  73. 73.
    Wadhwa PD, Entringer S, Buss C, Lu M. The contribution of maternal stress to preterm birth: issues and considerations. Clin Perinatol. 2011;38:351–84.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Naeye R. Maternal age, obstetric complications, and the outcome of pregnancy. Obstet Gynecol. 1983;61:210–6.PubMedGoogle Scholar
  75. 75.
    Lockwood C, Krikun G, Schatz F. The decidua regulates hemostasis in the human endometrium. Semin Reprod Endocrinol. 1999;17:45–51.CrossRefPubMedGoogle Scholar
  76. 76.
    Lockwood CJ, Schatz F. A biological model for the regulation of peri-implantational hemostasis and menstruation. J Soc Gynecol Invest. 1996;3:159–65.CrossRefGoogle Scholar
  77. 77.
    Mackenzie AP, Schatz F, Krikun G, et al. Mechanisms of abruption-induced premature rupture of the fetal membranes: thrombin enhanced decidual matrix metalloproteinase-3 (stromelysin-1) expression. Am J Obstet Gynecol. 2004;191:1996–2001.CrossRefPubMedGoogle Scholar
  78. 78.
    Rosen T, Schatz F, Kuczynski E, et al. Thrombin-enhanced matrix metalloproteinase-1 expression: a mechanism linking placental abruption with premature rupture of the membranes. J Matern Fetal Neonatal Med. 2002;11:11–7.CrossRefPubMedGoogle Scholar
  79. 79.
    Stephenson CD, Lockwood CJ, Ma Y, et al. Thrombin-dependent regulation of matrix metalloproteinase (MMP)-9 levels in human fetal membranes. J Matern Fetal Neonatal Med. 2005;18:17–22.CrossRefPubMedGoogle Scholar
  80. 80.
    Lockwood CJ, Toti P, Arcuri F, et al. Mechanisms of abruption-induced premature rupture of the fetal membranes: thrombinenhanced interleukin-8 expression in term decidua. Am J Pathol. 2005;167:1443–9.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Lathbury LJ, Salamonsen L. In vitro studies of the potential role of neutrophils in the process of menstruation. Mol Hum Reprod. 2000;6:899–906.CrossRefPubMedGoogle Scholar
  82. 82.
    Phillippe M, Chien E. Intracellular signaling and phasic myometrial contractions. J Soc Gynecol Invest. 1998;5:169–77.Google Scholar
  83. 83.
    Yaron Y, Lessing JB, Peyser M. Abruptio placentae associated with perforated appendicitis and generalized peritonitis. Am J Obstet Gynecol. 1992;166:14–5.CrossRefPubMedGoogle Scholar
  84. 84.
    Darby MJ, Caritis SN, Shen-Schwarz S. Placental abruption in the preterm gestation: an association with chorioamnionitis. Obstet Gynecol. 1989;74:88–92.PubMedGoogle Scholar
  85. 85.
    Harris BA Jr, Gore H, Flowers C Jr. Peripheral placental separation: a possible relationship to premature labor. Obstet Gynecol. 1985;66:774–8.PubMedGoogle Scholar
  86. 86.
    Kraus FT, Redline RW, Gersell D, et al., editors. Placental pathology. Washington, DC: American Registry of Pathology; 2004.Google Scholar
  87. 87.
    Goodwin T, Breen M. Pregnancy outcome and fetomaternal hemorrhage after non-catastrophic trauma. Am J Obstet Gynecol. 1990;162:665–71.CrossRefPubMedGoogle Scholar
  88. 88.
    Pearlman MD, Tintinelli JE, Lorenz P. A prospective controlled study of the outcome after trauma during pregnancy. Am J Obstet Gynecol. 1990;162:1502–10.CrossRefPubMedGoogle Scholar
  89. 89.
    Ananth CV, Oyelese Y, Yeo L, et al. Placental abruption in the united states, 1979 through 2001: temporal trends and potential determinants. Am J Obstet Gynecol. 2005;192:191–8.CrossRefPubMedGoogle Scholar
  90. 90.
    Salihu HM, Bekan B, Aliyu M, et al. Perinatal mortality associated with abruptio placenta in singletons and multiples. Am J Obstet Gynecol. 2005;193:198–203.CrossRefPubMedGoogle Scholar
  91. 91.
    Hendler I, Goldenberg RL, Mercer B, et al. The preterm prediction study: association between maternal body mass index (BMI) and spontaneous preterm birth. Am J Obstet Gynecol. 2005;192:882–6.CrossRefPubMedGoogle Scholar
  92. 92.
    Tamura T, Goldenberg RL, Freeberg L, et al. Maternal serum folate and zinc concentrations and their relationship to pregnancy outcome. Am J Clin Nutr. 1992;56:365–70.CrossRefPubMedGoogle Scholar
  93. 93.
    Scholl T. Iron status during pregnancy: setting the stage for mother and infant. Am J Clin Nutr. 2005;81:1218S–22S.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Neggers Y, Goldenberg R. Some thoughts on body mass index, micronutrient intakes and pregnancy outcome. J Nutr. 2003;133:1737S–40S.CrossRefPubMedGoogle Scholar
  95. 95.
    Sellers SM, Hodgson HT, Mitchell M, et al. Raised prostaglandin levels in the third stage of labor. Am J Obstet Gynecol. 1982;144:209–12.CrossRefPubMedGoogle Scholar
  96. 96.
    Casey ML, MacDonald P. Biomolecular processes in the initiation of parturition: decidual activation. Clin Obstet Gynecol. 1988;31:533–52.CrossRefPubMedGoogle Scholar
  97. 97.
    Matsumoto T, Sagawa N, Yoshida M, et al. The prostaglandin E2 and F2 alpha receptor genes are expressed in human myometrium and are down-regulated during pregnancy. Biochem Biophys Res Commun. 1997;238:838–41.CrossRefPubMedGoogle Scholar
  98. 98.
    Brodt-Eppley J, Myatt L. Prostaglandin receptors in lower uterine segment myometrium during gestation and labor. Obstet Gynecol. 1999;93:89–93.PubMedGoogle Scholar
  99. 99.
    Queenan JT, Spong CY, Lockwood C. Management of high-risk pregnancy. An evidence-based approach. 5th ed. Blackwell; 2007. 336 p.Google Scholar
  100. 100.
    Arias F, Tomich P. Etiology and outcome of low birth weight and preterm infants. Obstet Gynecol. 1982;60:277–81.PubMedGoogle Scholar
  101. 101.
    Moore TR, Iams JD, Creasy R, et al. Diurnal and gestational patterns of uterine activity in normal human pregnancy. Obstet Gynecol. 1994;83:517–23.CrossRefPubMedGoogle Scholar
  102. 102.
    Nageotte MP, Dorchester W, Porto M, et al. Quantitation of uterine activity preceding preterm, term, and postterm labor. Am J Obstet Gynecol. 1988;158:1254–9.CrossRefPubMedGoogle Scholar
  103. 103.
    Iams JD, Newman RB, Thom E, et al. Frequency of uterine contractions and the risk of spontaneous preterm delivery. New Engl J Med. 2002;346:250–5.CrossRefPubMedGoogle Scholar
  104. 104.
    Newman RB, Iams JD, Das A, et al. A prospective masked observational study of uterine contraction frequency in twins. Am J Obstet Gynecol. 2006;195:1564–70.CrossRefPubMedGoogle Scholar
  105. 105.
    Huras H, Ossowski P, Jach R, et al. Usefulness of marking alkaline phosphatase and C-reactive protein in monitoring the risk of preterm delivery. Med Sci Monit. 2011;17:CR657–62.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Shahshahan Z, Iravani H. Comparison of CRP and ALK-P serum levels in prediction of preterm delivery. Adv Biomed Res. 2016;5:17.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Hassan S, Romero R, Hendler I, et al. A sonographic short cervix as the only clinical manifestation of intra-amniotic infection. J Perinat Med. 2006;34:13–9.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Gomez R, Romero R, Nien J, et al. A short cervix in women with preterm labor and intact membranes: a risk factor for microbial invasion of the amniotic cavity. Am J Obstet Gynecol. 2005;192:678–89.CrossRefPubMedGoogle Scholar
  109. 109.
    Romero R, Salafia CM, Athanassiadis A, et al. The relationship between acute inflammatory lesions of the preterm placenta and amniotic fluid microbiology. Am J Obstet Gynecol. 1992;166:1382–8.CrossRefPubMedGoogle Scholar
  110. 110.
    Morgan T. Placental insufficiency is a leading cause of preterm labor. NeoReviews. 2014;15:518–25.CrossRefGoogle Scholar
  111. 111.
    Berghella V, Ness A, Bega G, et al. Cervical sonography in women with symptoms of preterm labor. Obstet Gynecol Clin North Am. 2005;32:383–96.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Navathe R, Berghella V. Tocolysis for acute preterm labor: where have we been, where are we now, and where are we going? Am J Perinatol. 2016;33:229–35.CrossRefPubMedGoogle Scholar
  113. 113.
    Goldenberg R. The management of preterm labor. Obstet Gynecol. 2002;100:1020–37.PubMedGoogle Scholar
  114. 114.
    Korenbrot CC, Aalto LH, Laros RJ. The cost effectiveness of stopping preterm labor with beta-adrenergic treatment. New Engl J Med. 1984;310:691–6.CrossRefPubMedGoogle Scholar
  115. 115.
    Raju TN, Mercer BM, Burchfield DJ, et al. Periviable birth: executive summary of a joint workshop by the Eunice Kennedy Shriver National Institute of Child Health and Human Development, Society for Maternal-Fetal Medicine, American Academy of Pediatrics, and American college of obstetricians and. Obstet Gynecol. 2014;123:1083–96.CrossRefPubMedGoogle Scholar
  116. 116.
    Crowther CA, Neilson JP, Verkuyl D, et al. Preterm labour in twin pregnancies: can it be prevented by hospital admission? BJOG. 1989;96:850–3.CrossRefGoogle Scholar
  117. 117.
    Simcox R, Sin WT, Seed PT, et al. Prophylactic antibiotics for the prevention of preterm birth in women at risk: a meta-analysis. A N Z J Obstet Gynaecol. 2007;47:367–77.Google Scholar
  118. 118.
    Mercer BM, Miodovnik M, Thurnau G, et al. Antibiotic therapy for reduction of infant morbidity after preterm premature rupture of the membranes: a randomized controlled trial. JAMA. 1997;278:989–95.CrossRefPubMedGoogle Scholar
  119. 119.
    Kenyon SL, Taylor DJ, Tarnow-Mordi W, et al. Broad spectrum antibiotics for preterm, prelabour rupture of fetal membranes: the ORACLE I randomized trial. Lancet. 2001;357:979–88.CrossRefPubMedGoogle Scholar
  120. 120.
    Lamont RF, Duncan SLB, Mandal D, et al. Intravaginal clindamycin to reduce preterm birth in women with abnormal genital tract flora. Obstet Gynecol. 2003;101:516–22.PubMedGoogle Scholar
  121. 121.
    Kiss H, Petricevic L, Husslein P. Prospective randomised controlled trial of an infection screening programme to reduce the rate of preterm delivery. BMJ. 2004;329:371–6.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Nakano T, Hiramatsu K, Kishi K, et al. Clindamycin modulates inflammatory-cytokine induction in lipopolysaccharide-stimulated mouse peritoneal macrophages. Antimicrob Agents Chemother. 2003;47:363–7.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Del Rosso JQ, Schmidt N. A review of the anti-inflammatory properties of clindamycin in the treatment of acne vulgaris. Cutis. 2010;85:15–24.PubMedGoogle Scholar
  124. 124.
    Viniker D. Hypothesis on the role of sub-clinical bacteria of the endometrium (bacteria endometrialis) in gynaecological and obstetric enigmas. Hum Reprod Update. 1999;5:373–85.CrossRefPubMedGoogle Scholar
  125. 125.
    Rosenstein IJ, Morgan DJ, Lamont R, et al. Effect of intravaginal clindamycin cream on pregnancy outcome and on abnormal vaginal microbial flora of pregnant women. Infect Dis Obstet Gynecol. 2000;8:158–65.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Kenyon SL, Taylor DJ, Tarnow-Mordi W. Broad-spectrum antibiotics for spontaneous preterm labour: the ORACLE II randomised trial. Lancet. 2001;357:989–94.CrossRefPubMedGoogle Scholar
  127. 127.
    Kenyon S, Pike K, Jones D, et al. Childhood outcomes after prescription of antibiotics to pregnant women with spontaneous preterm labour: 7-year follow-up of the ORACLE II trial. Lancet. 2008;372:1319–27.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Thomas M, Price D. Prenatal antibiotic exposure and subsequent atopy. Am J Respir Crit Care Med. 2003;167:1578–9.CrossRefPubMedGoogle Scholar
  129. 129.
    McKeever TM, Lewis SA, Smith C, et al. The importance of prenatal exposures on the development of allergic disease: a birth cohort study using the west midlands general practice database. Am J Respir Crit Care Med. 2002;166:827–32.CrossRefPubMedGoogle Scholar
  130. 130.
    Tsakok T, McKeever TM, Yeo L, et al. Does early life exposure to antibiotics increase the risk of eczema? A systematic review. Br J Dermatol. 2013;169:983–91.CrossRefPubMedGoogle Scholar
  131. 131.
    Stensballe LG, Simonsen J, Jensen S, et al. Use of antibiotics during pregnancy increases the risk of asthma in early childhood. J Pediatr. 2013;162:832–8.CrossRefPubMedGoogle Scholar
  132. 132.
    Schrag S, Gorwitz R, Fultz-Butts K, et al. Prevention of perinatal group B streptococcal disease. Revised guidelines from CDC. MMWR Recomm Rep. 2002;51:1–22.PubMedGoogle Scholar
  133. 133.
    Plessinger MA, Woods JR Jr, Miller R. Pretreatment of human amnion-chorion with vitamins C and E prevents hypochlorous acid induced damage. Am J Obstet Gynecol. 2000;183:979–85.CrossRefPubMedGoogle Scholar
  134. 134.
    Wideman GL, Baird GH, Bolding O. Ascorbic acid deficiency and premature rupture of membranes. Am J Obstet Gynecol. 1964;88:592–5.CrossRefPubMedGoogle Scholar
  135. 135.
    Woods JR Jr, Plessinger MA, Miller R. Vitamins C and E: missing links in preventing preterm premature rupture of membranes? Am J Obstet Gynecol. 2001;185:5–10.CrossRefPubMedGoogle Scholar
  136. 136.
    Rumbold AR, Crowther CA, Haslam R, et al. Vitamins C and E and the risks of preeclampsia and perinatal complications. New Engl J Med. 2006;354:1796–806.CrossRefPubMedGoogle Scholar
  137. 137.
    Hoffman ES, Suzuki M. No title. West J Surg. 1949;57:150.PubMedGoogle Scholar
  138. 138.
    Cosgrove S. Surgical complications of pregnancy. Am J Obstet Gynecol. 1937;34:469–79.CrossRefGoogle Scholar
  139. 139.
    De Voe RW, Day LA, Ferris D. Pregnancy at term complicated by ruptured appendix. Mayo Clin Proc. 1947;22:135–41.Google Scholar
  140. 140.
    Gates S, Brocklehurst P, Davis L. Prophylaxis for venous thromboembolic disease in pregnancy and the early postnatal period. Cochrane Database Syst Rev. 2002;2:CD001689.Google Scholar
  141. 141.
    Gomez R, Romero R, Medina L, et al. Cervicovaginal fibronectin improves the prediction of preterm delivery based on sonographic cervical length in patients with preterm uterine contractions and intact membranes. Am J Obstet Gynecol. 2005;192:350–9.CrossRefPubMedGoogle Scholar
  142. 142.
    Finnstrom O, Olausson PO, Sedin G, et al. The Swedish national prospective study on extremely low birthweight (ELBW) infants. Incidence, mortality, morbidity and survival in relation to level of care. Acta Paediatr. 1997;86:503–11.CrossRefPubMedGoogle Scholar
  143. 143.
    Haas DM, Caldwell DM, Kirkpatrick P, et al. Tocolytic therapy for preterm delivery: systematic review and network meta-analysis. BMJ. 2012;345:e6226.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Yilmaz HG, Akgun Y, Bac B, et al. Acute appendicitis in pregnancy - risk factors associated with principal outcomes: a case control study. Int J Surg. 2007;5:192–7.CrossRefPubMedGoogle Scholar
  145. 145.
    Creasy R. Preventing preterm birth. New Engl J Med. 1991;325:727–8.CrossRefPubMedGoogle Scholar
  146. 146.
    Kort B, Katz VL, Watson W. The effect of nonobstetric operation during pregnancy. Surg Gynecol Obstet. 1993;177:371–6.PubMedGoogle Scholar
  147. 147.
    Doberneck R. Appendectomy during pregnancy. Am Surg. 1985;51:265–8.PubMedGoogle Scholar
  148. 148.
    Hée P, Viktrup L. The diagnosis of appendicitis during pregnancy and maternal and fetal outcome after appendectomy. Int J Gynecol Obstet. 1999;65:129–35.CrossRefGoogle Scholar
  149. 149.
    Caritis SN, Darby MJ, Chan L. Pharmacological treatment of preterm labor. Clin Obstet Gynecol. 1988;3:635–51.CrossRefGoogle Scholar
  150. 150.
    Zhang Y, Zhao YY, Qiao J, et al. Diagnosis of appendicitis during pregnancy and perinatal outcome in the late pregnancy. Chin Med J. 2009;122:521–4.PubMedGoogle Scholar
  151. 151.
    Toth M, Witkin SC, Ledger A, et al. The role of infection in the etiology of preterm birth. Obstet Gynecol. 1988;71:723–6.PubMedGoogle Scholar
  152. 152.
    Allen JR, Helling TS, Langerfield M. Intraabdominal surgery during pregnancy. Am J Surg. 1989;158:567–74.CrossRefPubMedGoogle Scholar
  153. 153.
    El-Amin Ali M, Yahia Al-Shehri M, Zaki Z, et al. Acute abdomen in pregnancy. Int J Gynaecol Obstet. 1998;62:31–6.CrossRefPubMedGoogle Scholar
  154. 154.
    Kupferming M, Lessing JB, Yoron Y, et al. Nifedipine versus ritodrine for suppression of preterm labor. BJOG. 1993;100:1090–4.CrossRefGoogle Scholar
  155. 155.
    Ferguson J, Dyson DC, Holbrook JR, et al. Cardiovascular and metabolic effects associated with nifedipine and ritodrine tocolysis. Am J Obstet Gynecol. 1989;161:788–95.CrossRefPubMedGoogle Scholar
  156. 156.
    Read MD, Wellby D. The use of calcium antagonist nifedipine to suppress preterm labor. BJOG. 1986;93:504–18.CrossRefGoogle Scholar
  157. 157.
    Teyer WR, Randal HW, Graves W. Nifedipine versus ritodrine for suppression or preterm labor. J Reprod Med. 1990;35:649–53.Google Scholar
  158. 158.
    Lu EJ, Curet MJ, El-Sayed YY, et al. Medical versus surgical management of biliary tract disease in pregnancy. Am J Surg. 2004;188:755–9.CrossRefPubMedGoogle Scholar
  159. 159.
    Sungler P, Heinerman PM, Steiner H, et al. Laparoscopic cholecystectomy and interventional endoscopy for gallstone complications during pregnancy. Surg Endosc. 2000;14:267–71.CrossRefPubMedGoogle Scholar
  160. 160.
    Pak LL, Reece EA, Chan L. Is adverse pregnancy outcome predictable after blunt abdominal trauma? Am J Obstet Gynecol. 1998;179:1140–4.CrossRefPubMedGoogle Scholar
  161. 161.
    Dodd JM, Flenady V, Cincotta R, et al. Prenatal administration of progesterone for preventing preterm birth. Cochrane Database Syst Rev. 2006;1:CD004947.Google Scholar
  162. 162.
    Iams JD, Goldenberg RL, Meis P, et al. The length of the cervix and the risk of spontaneous premature delivery. New Engl J Med. 1996;334:567–72.CrossRefPubMedGoogle Scholar
  163. 163.
    Al-Qudah M. Postpartum pain due to thrombosed varicose veins of the round ligament of the uterus. Postgrad Med J. 1993;69:820–1.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Mathew M, Mubarak SA, Jesrani S. Conservative management of twisted ischemic adnexa in early pregnancy. Ann Med Heal Sci Res. 2015;5:142–4.CrossRefGoogle Scholar
  165. 165.
    Duncan RP, Shah M. Laparoscopic salpingectomy for isolated fallopian tube torsion in the third trimester. Case Rep Obstet Gynecol. 2012;2012:239352.PubMedPubMedCentralGoogle Scholar
  166. 166.
    Besinger RE, Niebyl JR, Keyes WG, et al. Randomized comparative trial of indomethacin and ritodrine for the long-term treatment of preterm labor. Am J Obstet Gynecol. 1991;164:981–8.CrossRefPubMedGoogle Scholar
  167. 167.
    Kurki T, Eronen M, Lumme R, et al. A randomized double-dummy comparison between indomethacin and nylidrin in threatened preterm labor. Obstet Gynecol. 1991;78:1093–7.PubMedGoogle Scholar
  168. 168.
    Norton ME, Merrill J, Cooper B, et al. Neonatal complications after the administration of indomethacin for preterm labor. New Engl J Med. 1993;329:1602–7.CrossRefPubMedGoogle Scholar
  169. 169.
    Moise JK. The effect of advancing gestational age on the frequency of fetal ductal constriction secondary to maternal indomethacin use. Am J Obstet Gynecol. 1993;168:1350–3.CrossRefPubMedGoogle Scholar
  170. 170.
    Amin SB, Sinkin RA, Glantz J. Metaanalysis of the effect of antenatal indomethacin on neonatal outcomes. Am J Obstet Gynecol. 2007;197:486e1–10.CrossRefGoogle Scholar
  171. 171.
    Major C, Lewis D, Harding J, et al. Tocolysis with indomethacin increases the incidence of necrotizing enterocolitis in the low-birth-weight neonate. Am J Obstet Gynecol. 1994;170:102–6.CrossRefPubMedGoogle Scholar
  172. 172.
    Gross G, Imamura T, Vogt S, et al. Inhibition of cyclooxygenase-2 prevents inflammation-mediated preterm labor in the mouse. Am J Physiol Regul Integr Comp Physiol. 2000;278:R1415–23.CrossRefPubMedGoogle Scholar
  173. 173.
    Rahimi R, Nikfar S, Rezaie A, et al. Pregnancy outcome in women with inflammatory bowel disease following exposure to 5-aminosalicylic acid drugs: a meta-analysis. Reprod Toxicol. 2008;25:271–5.CrossRefPubMedGoogle Scholar
  174. 174.
    Keelan JA, Khan S, Yosaatmadja F, et al. Prevention of inflammatory activation of human gestational membranes in an ex vivo model using a pharmacological NF-kappa B inhibitor. J Immunol. 2009;183:5270–8.CrossRefPubMedGoogle Scholar
  175. 175.
    Adams Waldorf KM, Persing D, et al. Pretreatment with toll-like receptor 4 antagonist inhibits lipopolysaccharide-induced preterm uterine contractility, cytokines, and prostaglandins in rhesus monkeys. Reprod Sci. 2008;15:121–7.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Li L, Kang J, Lei W. Role of toll-like receptor 4 in inflammation-induced preterm delivery. Mol Hum Reprod. 2010;16:267–72.CrossRefPubMedGoogle Scholar
  177. 177.
    Hawkins LD, Christ WJ, Rossignol D. Inhibition of endotoxin response by synthetic TLR4 antagonists. Curr Top Med Chem. 2004;4:1147–71.CrossRefPubMedGoogle Scholar
  178. 178.
    Matsunaga N, Tsuchimori N, Matsumoto T, et al. TAK-242 (resatorvid), a small-molecule inhibitor of toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol Pharmacol. 2011;79:34–41.CrossRefPubMedGoogle Scholar
  179. 179.
    Djokanovic N, Klieger-Grossmann C, Pupco A, et al. Safety of infliximab use during pregnancy. Reprod Toxicol. 2011;32:93–7.CrossRefPubMedGoogle Scholar
  180. 180.
    Nielsen OH, Loftus EV Jr, Jess T. Safety of TNF-alpha inhibitors during IBD pregnancy: a systematic review. BMC Med. 2013;11:174.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    di Meglio P, Ianaro A, Ghosh S. Amelioration of acute inflammation by systemic administration of a cell-permeable peptide inhibitor of NF-kappa B activation. Arthritis Rheum. 2005;52:951–8.CrossRefPubMedGoogle Scholar
  182. 182.
    Underwood DC, Osborn RR, Kotzer C, et al. SB 239063, a potent p38 MAP kinase inhibitor, reduces inflammatory cytokine production, airways eosinophil infiltration, and persistence. J Pharmacol Exp Ther. 2000;293:281–8.PubMedGoogle Scholar
  183. 183.
    Ward KW, Proksch JW, Azzarano L, et al. SB-239063, a potent and selective inhibitor of p38 map kinase: preclinical pharmacokinetics and species-specific reversible isomerization. Pharm Res. 2001;18:1336–44.CrossRefPubMedGoogle Scholar
  184. 184.
    Ng PY, Ireland DJ, Keelan J. Drugs to block cytokine signaling for the prevention and treatment of inflammation-induced preterm birth. Front Immunol. 2015;6:166.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Dan U, Rabinovici J, Koller M, et al. Iatrogenic mechanical ileus due to over-distended uterus. Gynecol Obstet Invest. 1988;25:143–4.CrossRefPubMedGoogle Scholar
  186. 186.
    Bryan JW. Surgical emergencies in pregnancy and in the puerperium. Am J Obstet Gynecol. 1955;70:1204–11.PubMedGoogle Scholar
  187. 187.
    Ingemarsson I. Tocolytic therapy and clinical experience. Combination therapy. BJOG. 2005;112:89–93.CrossRefPubMedGoogle Scholar
  188. 188.
    Smith GN, Walker MC, Ohlsson A, et al. Randomized double blind placebo controlled trial of transdermal nitroglycerin for preterm labor. Am J Obstet Gynecol. 2007;196:37.e1–8.CrossRefGoogle Scholar
  189. 189.
    Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006;3:CD004454.Google Scholar
  190. 190.
    McCormick M. The contribution of low birth weight to infant mortality and childhood morbidity. New Engl J Med. 1985;312:82–90.CrossRefPubMedGoogle Scholar
  191. 191.
    Goldenberg RL, Andrews WW, Goepfert AR, et al. The Alabama preterm birth study: umbilical cord blood Ureaplasma urealyticum and mycoplasma hominis cultures in very preterm newborn infants. Am J Obstet Gynecol. 2008;198:43.e1–5.CrossRefPubMedCentralGoogle Scholar
  192. 192.
    Andrews WW, Goldenberg RL, Faye-Petersen O, et al. The Alabama preterm birth study: polymorphonuclear and mononuclear cell placental infiltrations, other markers of inflammation, and outcomes in 23- to 32-week preterm newborn infants. Am J Obstet Gynecol. 2006;195:803–8.CrossRefPubMedGoogle Scholar
  193. 193.
    Gotsch F, Romero R, Kusanovic J, et al. The fetal inflammatory response syndrome. Clin Obstet Gynecol. 2007;50:652–83.CrossRefPubMedGoogle Scholar
  194. 194.
    Gomez R, Romero R, Ghezzi F, et al. The fetal inflammatory response syndrome. Am J Obstet Gynecol. 1998;179:194–202.CrossRefPubMedGoogle Scholar
  195. 195.
    Findley P. Appendicitis complicating pregnancy. JAMA. 1912;59:612–4.CrossRefGoogle Scholar
  196. 196.
    Wilson R. Acute appendicitis complicating pregnancy, labor and the puerperium. Surg Gynecol Obstet 1927;45:620–8.Google Scholar
  197. 197.
    Andersen AM, Vastrup P, Wohlfahrt J, et al. Fever in pregnancy and risk of fetal death: a cohort study. Lancet. 2002;360:1552–6.CrossRefPubMedGoogle Scholar
  198. 198.
    Hagberg H, Wennerholm UB, Sävman K. Curr Opin Infect Dis. 2002;15:301–6.CrossRefPubMedGoogle Scholar
  199. 199.
    Wu Y. Systematic review of chorioamnionitis and cerebral palsy. Ment Retard Dev Disabil Res Rev. 2002;8:25–9.CrossRefPubMedGoogle Scholar
  200. 200.
    Grether JK, Nelson K. Maternal infection and cerebral palsy in infants of normal birth weight. JAMA. 1997;278:207–11.CrossRefGoogle Scholar
  201. 201.
    Hansen-Pupp I, Hallin AL, Hellström-Westas L, et al. Inflammation at birth is associated with subnormal development in very preterm infants. Pediatr Res. 2008;64:183–8.CrossRefPubMedGoogle Scholar
  202. 202.
    Khwaja O, Volpe J. Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed. 2008;93:F153–61.CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Kaukola T, Herva R, Perhomaa M, et al. Population cohort associating chorioamnionitis, cord inflammatory cytokines and neurologic outcome in very preterm, extremely low birth weight infants. Pediatr Res. 2006;59:478–83.CrossRefPubMedGoogle Scholar
  204. 204.
    Redline RW, Minich N, Taylor HG, et al. Placental lesions as predictors of cerebral palsy and abnormal neurocognitive function at school age in extremely low birth weight infants (<1 kg). Pediatr Dev Pathol. 2007;10:282–92.CrossRefGoogle Scholar
  205. 205.
    Suppiej A, Franzoi M, Vedovato S, et al. Neurodevelopmental outcome in preterm histological chorioamnionitis. Early Hum Dev. 2009;85:187–9.CrossRefPubMedGoogle Scholar
  206. 206.
    Limperopoulos C, Bassan H, Sullivan N, et al. Positive screening for autism in ex-preterm infants: prevalence and risk factors. Pediatrics. 2008;121:758–65.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Meyer U, Feldon J, Dammann O. Schizophrenia and autism: both shared and disorder-specific pathogenesis via perinatal inflammation? Pediatr Res. 2011;69:26R–33R.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Brown AS, Hooton J, Schaefer C, et al. Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry. 2004;161:889–95.CrossRefPubMedGoogle Scholar
  209. 209.
    Brown A. The environment and susceptibility to schizophrenia. Prog Neurobiol. 2011;93:23–58.CrossRefPubMedGoogle Scholar
  210. 210.
    Wu WY, Colford J. Chorioamnionitis as a risk factor for cerebral palsy: a meta-analysis. JAMA. 2000;284:1417–24.CrossRefGoogle Scholar
  211. 211.
    Yanowitz TD, Jordan JA, Gilmour C, et al. Hemodynamic disturbances in premature infants born after chorioamnionitis: association with cord blood cytokine concentrations. Pediatr Res. 2002;51:310–6.CrossRefPubMedGoogle Scholar
  212. 212.
    Romero R, Espinoza J, Gonçalves L, et al. Fetal cardiac dysfunction in preterm premature rupture of membranes. J Matern Fetal Neonatal Med. 2004;16:146–57.CrossRefPubMedGoogle Scholar
  213. 213.
    Yanowitz TD, Baker RW, Roberts JM, et al. Low blood pressure among very-low-birth-weight infants with fetal vessel inflammation. J Perinatol. 2004;24:299–304.CrossRefPubMedGoogle Scholar
  214. 214.
    Yanowitz T. Cerebrovascular autoregulation among very low birth weight infants. J Perinatol. 2011;31:689–91.CrossRefPubMedGoogle Scholar
  215. 215.
    Yoon BH, Kim CJ, Romero R, et al. Experimentally induced intrauterine infection causes fetal brain white matter lesions in rabbits. Am J Obstet Gynecol. 1997;177:797–802.CrossRefPubMedGoogle Scholar
  216. 216.
    Nitsos I, Rees SM, Duncan J, et al. Chronic exposure to intra-amniotic lipopolysaccharide affects the ovine fetal brain. J Soc Gynecol Invest. 2006;13:239–47.CrossRefGoogle Scholar
  217. 217.
    Duncan JR, Cock ML, Suzuki K, et al. Chronic endotoxin exposure causes brain injury in the ovine fetus in the absence of hypoxemia. J Soc Gynecol Invest. 2006;13:87–96.CrossRefGoogle Scholar
  218. 218.
    Cai Z, Pan ZL, Pang Y, et al. Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr Res. 2000;47:64–72.CrossRefPubMedGoogle Scholar
  219. 219.
    Chang BS, Lowenstein D. Epilepsy. New Engl J Med. 2003;349:1257–66.CrossRefPubMedGoogle Scholar
  220. 220.
    Guerrini R. Epilepsy in children. Lancet. 2006;367:499–524.CrossRefPubMedGoogle Scholar
  221. 221.
    Hauser W. The prevalence and incidence of convulsive disorders in children. Epilepsia. 1994;35:S1–6.CrossRefPubMedGoogle Scholar
  222. 222.
    Browne TR, Holmes G. Epilepsy. New Engl J Med. 2001;344:1145–51.CrossRefPubMedGoogle Scholar
  223. 223.
    Cowan L. The epidemiology of the epilepsies in children. Ment Retard Dev Disabil Res Rev. 2002;8:171–81.CrossRefPubMedGoogle Scholar
  224. 224.
    Whitehead E, Dodds L, Joseph K, et al. Relation of pregnancy and neonatal factors to subsequent development of childhood epilepsy: a population-based cohort study. Pediatrics. 2006;117:1298–306.CrossRefPubMedGoogle Scholar
  225. 225.
    Procopio M, Marriott P. Seasonality of birth in epilepsy: a Danish study. Acta Neurol Scand. 1998;98:297–301.CrossRefPubMedGoogle Scholar
  226. 226.
    Procopio M, Marriott PK, Davies R. Seasonality of birth in epilepsy: a southern hemisphere study. Seizure. 2006;15:17–21.CrossRefPubMedGoogle Scholar
  227. 227.
    Sun Y, Vestergaard M, Christensen J, et al. Prenatal exposure to maternal infections and epilepsy in childhood: a population-based cohort study. Pediatrics. 2008;121:e1100–7.CrossRefPubMedGoogle Scholar
  228. 228.
    Nørgaard M, Ehrenstein V, Nielsen R, et al. Maternal use of antibiotics, hospitalisation for infection during pregnancy, and risk of childhood epilepsy: a population-based cohort study. PLoS One. 2012;7:e30850.CrossRefPubMedPubMedCentralGoogle Scholar
  229. 229.
    Sun Y, Vestergaard M, Christensen J, et al. Prenatal exposure to elevated maternal body temperature and risk of epilepsy in childhood: a population-based pregnancy cohort study. Paediatr Perinat Epidemiol. 2011;25:53–9.CrossRefPubMedGoogle Scholar
  230. 230.
    Fabene PF, Bramanti P, Constantin G. The emerging role for chemokines in epilepsy. J Neuroimmunol. 2010;224:22–7.CrossRefPubMedGoogle Scholar
  231. 231.
    Vezzani A, Granata T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia. 2005;46:1724–43.CrossRefPubMedGoogle Scholar
  232. 232.
    Lieberman E, Eichenwald E, Mathur G, et al. Intrapartum fever and unexplained seizures in term infants. Pediatrics. 2000;106:983–8.CrossRefPubMedGoogle Scholar
  233. 233.
    Slattery MM, Morrison JJ. Preterm Delivery. Vol. 360, Lancet 2002. p. 1489–1497.Google Scholar
  234. 234.
    Wood NS, Costeloe K, Gibson AT, et al. The EPICure study: associations and antecedents of neurological and developmental disability at 30 months of age following extremely preterm birth. Arch Dis Child Fetal Neonatal Ed. 2005;90:F134–40.CrossRefPubMedPubMedCentralGoogle Scholar
  235. 235.
    Petrou S, Mehta Z, Hockley C, et al. The impact of preterm birth on hospital inpatient admissions and costs during the first 5 years of life. Pediatrics. 2003;112:1290–7.CrossRefPubMedGoogle Scholar
  236. 236.
    Shennan AH, Bewley S. Why should preterm births be rising? BMJ. 2006;332:924–5.CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Huddy CL, Johnson A, Hope PL. Educational and behavioural problems in babies of 32-35 weeks gestation. Arch Dis Child Fetal Neonatal Ed. 2001;85:F23–8.CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Bartley M, Power C, Blane D, et al. Birth weight and later socioeconomic disadvantage: evidence from the 1958 British cohort study. Br Med J. 1994;309:1475–8.CrossRefGoogle Scholar
  239. 239.
    Saigal S, Stoskopf B, Streiner D, et al. Transition of extremely low-birth-weight infants from adolescence to young adulthood: comparison with normal birth-weight controls. JAMA. 2006;295:667–75.CrossRefPubMedGoogle Scholar
  240. 240.
    Davey Smith G, Hart C, Ferrell C, et al. Birth weight of offspring and mortality in the Renfrew and paisley study: prospective observational study. BMJ. 1997;315:1189–93.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Goran Augustin
    • 1
    • 2
  1. 1.School of Medicine University of ZagrebZagrebCroatia
  2. 2.Department of SurgeryUniversity Hospital Centre ZagrebZagrebCroatia

Personalised recommendations