Advertisement

Increased Intra-Abdominal Pressure

  • Goran Augustin
Chapter

Abstract

Clinicians are often unfamiliar with maternal-fetal physiology in critical illness including the possible impact of increased intra-abdominal pressure (IAP) and intra-abdominal hypertension (IAH) on both the mother and the fetus. Pregnancy is a particular condition where multiple factors such as obesity, preeclampsia, or postpartum hemorrhage may lead to the over-diagnosis of abdominal compartment syndrome (ACS). When raised IAP is detected and treated, ACS may often be avoided, especially with the adoption of newer resuscitation strategies. Critical illness in pregnancy is not uncommon, given that the population-based incidence of severe obstetric morbidity has been reported to be as high as 1.2% in the UK and 1–3% in the USA. There is little data regarding physiologic and pathophysiologic IAP in pregnancy. Current consensus guidelines group pregnancy and morbid obesity together as chronically compensated states of IAH. Both operative and non-operative conditions can cause increased IAP. Despite the limited understanding of IAH in maternal care, even less is known regarding its effects on the fetus. Whether there are subclinical effects of even modest elevations of maternal IAP on the fetus is completely unknown. Therefore, in all critically ill pregnant patients, IAP should be measured. Treatment options, including non-operative and operative strategies, for its normalization, should be carried out immediately after verification of increased IAP in pregnancy.

References

  1. 1.
    The World Health Report 2005-Make Every Mother and Child Count. Geneva 2005. United Nations: the millennium development goals report 2010. New York: World Health Organization; 2010.Google Scholar
  2. 2.
    Zeeman G. Obstetric critical care: a blueprint for improved outcomes. Crit Care Med. 2006;34:S208–14.CrossRefGoogle Scholar
  3. 3.
    American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 100: Critical care in pregnancy. Obstet Gynecol. 2009;113:443–50.Google Scholar
  4. 4.
    Balogh ZJ, Martin A, van Wessem K, et al. Mission to eliminate postinjury abdominal compartment syndrome. Arch Surg. 2011;146:938–43.CrossRefGoogle Scholar
  5. 5.
    Cotton BA, Au BK, Nunez T, et al. Predefined massive transfusion protocols are associated with a reduction in organ failure and postinjury complications. J Trauma. 2009;66:41–8.CrossRefGoogle Scholar
  6. 6.
    Paramore R. The intra-abdominal pressure in pregnancy. Proc R Soc Med. 1913;6:291–334.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Soltsman S, Russo P, Greenshpun A, et al. Abdominal compartment syndrome after laparoscopic salpingectomy for ectopic pregnancy. J Minim Invasive Gynecol. 2008;15:508–10.CrossRefPubMedGoogle Scholar
  8. 8.
    Richter CE, Saber S, Thung S. Eclampsia complicated by abdominal compartment syndrome. Am J Perinatol. 2009;26:751–3.CrossRefPubMedGoogle Scholar
  9. 9.
    Dart BW IV, Cockerham WT, Torres C, et al. A novel use of recombinant factor VIIa in HELLP syndrome associated with spontaneous hepatic rupture and abdominal compartment syndrome. J Trauma. 2004;57:171–4.CrossRefPubMedGoogle Scholar
  10. 10.
    Waterstone M, Bewley S, Incidence WC. Predictors of severe obstetric morbidity: case-control study. BMJ. 2001;322:1089–93.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gaiser R. Physiologic changes of pregnancy. In: Chestnut D, Polley L, Tsen L, Wong C, editors. Chestnut’s obstetric anesthesia: principles and practice. 4th ed. Philadelphia: Mosby Elsevier; 2009. p. 15–26.CrossRefGoogle Scholar
  12. 12.
    Relaxin BD. A pleiotropic hormone. Gen Pharmacol. 1997;28:13–22.CrossRefGoogle Scholar
  13. 13.
    Suresh MS, LaToya Mason C,et al. Cardiopulmonary resuscitation and the parturient. Best Pr Res Clin Obstet Gynaecol. 2010;24:383–400.CrossRefGoogle Scholar
  14. 14.
    Scott DB, Kerr M. Inferior vena caval pressure in late pregnancy. J Obstet Gynaecol Br Commonw. 1963;70:1044–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Malbrain ML, Cheatham ML, Kirkpatrick A, et al. Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. I. Definitions. Intensive Care Med. 2006;32:1722–32.CrossRefGoogle Scholar
  16. 16.
    Al-Khan A, Shah M, Altabban M, et al. Measurement of intraabdominal pressure in pregnant women at term. J Reprod Med. 2011;56:53–7.PubMedGoogle Scholar
  17. 17.
    Kinsella S. Lateral tilt for pregnant women: why 15 degrees? Anaesthesia. 2003;58:835–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Bamber JH, Dresner M. Aortocaval compression in pregnancy: the effect of changing the degree and direction of lateral tilt on maternal cardiac output. Anesth Analg. 2003;97:256–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Chun R, Baghirzada L, Kirkpatrick A. Measurement of intra-abdominal pressure in term pregnancy: a pilot study. Int J Obstet Anesth. 2012;21:135–9.CrossRefPubMedGoogle Scholar
  20. 20.
    De Keulenaer BL, De Waele JJ, Powell B, et al. What is normal intra-abdominal pressure and how is it affected by positioning, body mass and positive end-expiratory pressure? Intensive Care Med. 2009;35:969–76.CrossRefPubMedGoogle Scholar
  21. 21.
    McBeth PB, Zygun DA, Widder S, et al. Effect of patient positioning on intra-abdominal pressure monitoring. Am J Surg. 2007;193:644–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Cheatham ML, De Waele JJ, De Laet I, et al. The impact of body position on intra-abdominal pressure measurement: a multicenter analysis. Crit Care Med. 2009;37:2187–90.CrossRefGoogle Scholar
  23. 23.
    Cheatham ML, Malbrain ML, Kirkpatrick A, et al. Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. II. Recommendations. Intensive Care Med. 2007;33:951–62.CrossRefGoogle Scholar
  24. 24.
    Malbrain ML, Cheatham M. Definitions and Pathophysiological implications of intra-abdominal hypertension and abdominal compartment syndrome. Am Surg. 2011;77:6–11.Google Scholar
  25. 25.
    Berghella V, Baxter JK, Chauhan S. Evidence-based surgery for cesarean delivery. Am J Obstet Gynecol. 2005;193:1607–17.CrossRefPubMedGoogle Scholar
  26. 26.
    Cluver C, Novikova N, Hofmeyr GJ, et al. Maternal position during caesarean section for preventing maternal and neonatal complications. Cochrane Database Syst Rev. 2013;3:CD007623.Google Scholar
  27. 27.
    Abdel-Razeq SS, Campbell K, Funai E, et al. Normative postpartum intraabdominal pressure: potential implications in the diagnosis of abdominal compartment syndrome. Am J Obstet Gynecol. 2010;203:149.e1–4.CrossRefGoogle Scholar
  28. 28.
    Sanchez NC, Tenofsky PL, Dort J, et al. What is normal intra-abdominal pressure? Am Surg. 2001;67:243–8.PubMedGoogle Scholar
  29. 29.
    Sawchuck DJ, Wittmann BK. Pre-eclampsia renamed and reframed: intra-abdominal hypertension in pregnancy. Med Hypotheses. 2014;83:619–32.CrossRefPubMedGoogle Scholar
  30. 30.
    Malbrain MLNG, De Laet IE, De Waele JJ, et al. Intra-abdominal hypertension: definitions, monitoring, interpretation and management. Best Pract Res Clin Anaesthesiol. 2013;27:249–70.CrossRefPubMedGoogle Scholar
  31. 31.
    Fuchs F, Bruyere M, Senat M-V, et al. Are standard intra-abdominal pressure values different during pregnancy? PLoS One. 2013;8:e77324.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hawkes R, Iqbal J, Mansour F, et al. Physics for scientists and engineers: an interactive approach. Nelson College Indigenous; 2014.Google Scholar
  33. 33.
    Gong G, Wang P, Ding W, et al. The role of oxygen-free radical in the apoptosis of enterocytes and bacterial translocation in abdominal compartment syndrome. Free Radic Res. 2009;43:470–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Kaussen T, Srinivasan PK, Afify M, Herweg C, Tolba R, Conze J, et al. Influence of two different levels of intra-abdominal hypertension on bacterial translocation in a porcine model. Ann Intensive Care. 2012;2 1:S17.Google Scholar
  35. 35.
    Fasano A, Abreu M, Agardh D, et al. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev. 2011;91:151–75.CrossRefPubMedGoogle Scholar
  36. 36.
    Kubiak, BD; Albert, SP; Gatto L et al. A clinically applicable porcine model of septic and ischemia/reperfusion-induced shock and multiple organ injury. J Surg Res. 2011;166:e59–69.CrossRefPubMedGoogle Scholar
  37. 37.
    Bhattacharyya A, Chattopadhyay R, Mitra S, et al. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94:329–54.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev. 2011;91:151–75.CrossRefPubMedGoogle Scholar
  39. 39.
    El Asmar R, Panigrahi P, Bamford P, et al. Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology. 2002;123:1607–15.CrossRefPubMedGoogle Scholar
  40. 40.
    Karnak I, Aksoz E, Ekinci S, et al. Increased maternal intraabdominal pressure alters the contractile properties of fetal rabbit bladder. J Pediatr Surg. 2008;43:1711–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Curet MJ, Weber DM, Sae A, et al. Effects of helium pneumoperitoneum in pregnant ewes. Surg Endosc. 2001;15:710–4.CrossRefPubMedGoogle Scholar
  42. 42.
    Tanyel F. Urinary tract anomalies and dysfunctional voiding: a spectrum dictated by the influence of amniotic pressure upon fetal urodynamics. Med Hypotheses. 2000;54:140–5.CrossRefPubMedGoogle Scholar
  43. 43.
    Kumar P, Sait SF, Sharma A, et al. Ovarian hyperstimulation syndrome. J Hum Reprod Sci. 2011;4:70–5.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Madill JJ, Mullen NB, Harrison B. Ovarian hyperstimulation syndrome: a potentially fatal complication of early pregnancy. J Emerg Med. 2008;35:283–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Chen CD, Wu MY, Chao K, et al. Update on management of ovarian hyperstimulation syndrome. Taiwan J Obstet Gynecol. 2011;50:2–10.CrossRefPubMedGoogle Scholar
  46. 46.
    Cotechini T, Komisarenko M, Sperou A, et al. Inflammation in rat pregnancy inhibits spiral artery remodeling leading to fetal growth restriction and features of preeclampsia. J Exp Med. 2014;211:165–79.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Renaud SJ, Cotechini T, Quirt JS, et al. Spontaneous pregnancy loss mediated by abnormal maternal inflammation in rats is linked to deficient uteroplacental perfusion. J Immunol. 2011;186(3):1799–808.CrossRefPubMedGoogle Scholar
  48. 48.
    Chesley L. History and epidemiology of preeclampsia-eclampsia. Clin Obstet Gynecol. 1984;27:801–20.CrossRefPubMedGoogle Scholar
  49. 49.
    Eclampsia PR. Its incidence. Proc R Soc Med. 1922;15:14–6.Google Scholar
  50. 50.
    Mulier JP, Dillemans M, Crombach C, et al. On the abdominal pressure volume relationship. Internet. J Anesth. 2009;21Google Scholar
  51. 51.
    Mulier J, Dillemans B, Determinants HL. Of the abdominal pressure volume relation in non ACS patients. Acta Clin Belg. 2007;62:289.Google Scholar
  52. 52.
  53. 53.
    Contreras F, Fouillioux C, Bolivar A, et al. Endothelium and hypertensive disorders in pregnancy. Am J Ther. 2003;10:415–22.CrossRefPubMedGoogle Scholar
  54. 54.
    Silasi M, Cohen B, Karumanchi SA, et al. Abnormal placentation, angiogenic factors, and the pathogenesis of preeclampsia. Obstet Gynecol Clin North Am. 2010;37:239–53.CrossRefPubMedGoogle Scholar
  55. 55.
    Dekker G, Robillard P. Pre-eclampsia: is the immune maladaptation hypothesis still standing? An epidemiological update J Reprod Immunol. 2007;76:8–16.CrossRefPubMedGoogle Scholar
  56. 56.
    Ball CG, Kirkpatrick AW, McBeth P. The secondary abdominal compartment syndrome: not just another post-traumatic complication. Can J Surg. 2008;51:399–405.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Biffl WL, Moore EE, Burch J, et al. Secondary abdominal compartment syndrome is a highly lethal event. Am J Surg. 2001;182:645–8.CrossRefGoogle Scholar
  58. 58.
    Sugerman H. Hypothesis: preeclampsia is a venous disease secondary to an increased intra-abdominal pressure. Med Hypotheses. 2011;77:841–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Grossman LC, Michalakis KG, Browne H, et al The pathophysiology of ovarian hyperstimulation syndrome: an unrecognized compartment syndrome. Fertil Steril. 2010;94:1392–8.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Tollan A, Holst N, Forsdahl F, et al Transcapillary fluid dynamics during ovarian stimulation for in vitro fertilization. Am J Obstet Gynecol. 1990;162:554–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Balasch J, Arroyo V, Fáabregues F, et al. Neurohormonal and hemodynamic changes in severe cases of the ovarian hyperstimulation syndrome. Ann Intern Med. 1994;121:27–33.CrossRefPubMedGoogle Scholar
  62. 62.
    Manau D, Balasch J, Arroyo V, et al. Circulatory dysfunction in asymptomatic in vitro fertilization patients. Relationship with hyperestrogenemia and activity of endogenous vasodilators. J Clin Endocrinol Metab. 1998;83:1489–93.PubMedGoogle Scholar
  63. 63.
    Firoozeh V, Maryam Z, Shohreh M, et al. Abdominal compartment syndrome due to OHSS. J Obstet Gynecol India. 2013;53:350–3.Google Scholar
  64. 64.
    Delvigne A, Rozenberg S. Review of clinical course and treatment of ovarian hyperstimulation syndrome (OHSS). Hum Reprod Update. 2003;9:77–96.CrossRefPubMedGoogle Scholar
  65. 65.
    Scott JS. Pregnancy toxemia associated with hydrops foetalis, hydatidiform mole and hydramnios. BJOG. 1958;65:689–701.CrossRefGoogle Scholar
  66. 66.
    Page E. The relation between hydatid moles, relative ischemia of the gravid uterus, and the placental origin of eclampsia. Am J Obstet Gynecol. 1939;37:291–3.CrossRefGoogle Scholar
  67. 67.
    Peparini N, Di Matteo FM, Silvestri A, et al. Abdominal hypertension in Meigs’ syndrome. Eur J Surg Oncol. 2008;34:938–42.CrossRefPubMedGoogle Scholar
  68. 68.
    Kron IL, Harman PK, Nolan S. SP. Ann Surg. 1984;199:28–30.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Miniño AM, Heron MP, Murphy SL, et al. Deaths: final data for 2004. Natl Vital Stat Reports. 2007;55:1–119.Google Scholar
  70. 70.
    Sugrue M, Jones F, Deane SA, et al. Intra-abdominal hypertension is an independent cause of postoperative renal impairment. Arch Surg. 1999;134:1082–5.CrossRefGoogle Scholar
  71. 71.
    Schwartzberg BS, Conyers JA, Moore J. First trimester of pregnancy laparoscopic procedures. Surg Endosc. 1997;11:1216–7.CrossRefPubMedGoogle Scholar
  72. 72.
    Hunter JG, Swanstrom L, Thornburg K. Carbon dioxide pneumoperitoneum induces fetal acidosis in a pregnant ewe model. Surg Endosc. 1995;9:272–9.PubMedGoogle Scholar
  73. 73.
    Soper NJ, Hunter JG, Petrie R. Laparoscopic cholecystectomy during pregnancy. Surg Endosc. 1992;6:115–7.CrossRefPubMedGoogle Scholar
  74. 74.
    Liu YX, Zhang Y, Huang JF, et al. Meta-analysis comparing the safety of laparoscopic and open surgical approaches for suspected adnexal mass during the second trimester. Int J Gynaecol Obstet. 2017;136:272–9.CrossRefGoogle Scholar
  75. 75.
    Nasioudis D, Tsilimigras D, Economopoulos KP. Laparoscopic cholecystectomy during pregnancy: a systematic review of 590 patients. Int J Surg. 2016;27:165–75.CrossRefPubMedGoogle Scholar
  76. 76.
    Segev L, Segev Y, Rayman S, et al. Appendectomy in pregnancy: appraisal of the minimally invasive approach. J Laparoendosc Adv Surg Tech. 2016;26:893–7.CrossRefGoogle Scholar
  77. 77.
    Schorr RT. Clinical Correspondence. Laparoscopic cholecystectomy and pregnancy. J Laparoendosc Surg. 1993;3:291–3.CrossRefPubMedGoogle Scholar
  78. 78.
    Shaked G, Twena M, Laparoscopic CI. Cholecystectomy for empyema of gallbladder during pregnancy. Surg Laparosc Endosc. 1994;4:65–7.PubMedGoogle Scholar
  79. 79.
    Arvidsson D, Laparoscopic GE. Cholecystectomy during pregnancy. Surg Laparosc Endosc. 1991;3:193–4.Google Scholar
  80. 80.
    Nezhat FR, Tazuke S, Nezhat CH, et al. Laparoscopy during pregnancy: a literature review. JSLS. 1997;1:17–27.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Holzman M, Sharp K, Richards W. Hypercarbia during carbon dioxide gas insufflation for therapeutic laparoscopy: a note of caution. Surg Laparosc Endosc. 1992;2:11–4.Google Scholar
  82. 82.
    Wittgen CM, Andrus CH, Fitzgerald SD, et al. Analysis of the hemodynamic and ventilatory effects of laparoscopic cholecystectomy. Arch Surg. 1991;126:991–7.CrossRefPubMedGoogle Scholar
  83. 83.
    Westerband A, Van De Water J, Amzallag M, et al. Cardiovascular changes during laparoscopic cholecystectomy. Surg Gynecol Obstet. 1992;175:535–8.PubMedGoogle Scholar
  84. 84.
    Barnard JM, Chaffin D, Droste S, et al. Fetal response to carbon dioxide pneumoperitoneum in the pregnant ewe. Obstet Gynecol. 1995;85:669–74.CrossRefGoogle Scholar
  85. 85.
    Surgeons B of G of the S of AG and E. Guidelines for diagnosis, treatment and use of laparoscopy for surgical problems during pregnancy. 2007.Google Scholar
  86. 86.
    Curet MJ, Vogt DA, Schob O, et al. Effects of CO2 pneumoperitoneum in pregnant ewes. J Surg Res. 1996;63:339–44.CrossRefPubMedGoogle Scholar
  87. 87.
    Sungler P, Heinerman PM, Steiner H, et al. Laparoscopic cholecystectomy and interventional endoscopy for gallstone complications during pregnancy. Surg Endosc. 2000;14:267–71.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Steinbrook RA, Brooks DC, Datta S. Laparoscopic cholecystectomy during pregnancy. Review of anesthetic management, surgical considerations. Surg Endosc. 1996;10:511–5.CrossRefPubMedGoogle Scholar
  89. 89.
    Curet MJ. Special problems in laparoscopic surgery. Previous abdominal surgery, obesity, and pregnancy. Surg Clin North Am. 2000;80:1093–110.CrossRefPubMedGoogle Scholar
  90. 90.
    Barnard JM, Chaffin D, Droste S, et al. Fetal response to carbon dioxide pneumoperitoneum in the pregnant ewe. Obstet Gynecol. 1995;85:669–74.CrossRefPubMedGoogle Scholar
  91. 91.
    Nezhat C, Seidman DS, Vreman H, et al. The risk of carbon monoxide poisoning after prolonged laparoscopic surgery. Obstet Gynecol. 1996;88:771–4.CrossRefPubMedGoogle Scholar
  92. 92.
    Beebe DS, Swica H, Carlson N, et al. High-levels of carbon-monoxide are produced by electro-cautery of tissue during laparoscopic cholecystectomy. Anesth Analg. 1993;77:338–41.CrossRefPubMedGoogle Scholar
  93. 93.
    Barrett WL, Surgical GS. Smoke – a review of the literature. Is this just a lot of hot air? Surg Endosc. 2003;17:979–87.CrossRefPubMedGoogle Scholar
  94. 94.
    Lusk FI, Deprest J, Marcus M, et al. Carbon dioxide pneumoamnios causes acidosis in fetal lamb. Fetal Diagn Ther. 1994;9:105–9.CrossRefGoogle Scholar
  95. 95.
    Kashtan J, Green JF, Parsons EQ, et al. Hemodynamic effects of increased abdominal pressure. J Surg Res. 1981;30:249–55.CrossRefGoogle Scholar
  96. 96.
    Gannedahl P, Odeberg S, Brodin LA, et al. Effects of posture and pneumoperitoneum during anaesthesia on the indices of left ventricular filling. Acta Anaesthesiol Scand. 1996;40:160–6.CrossRefPubMedGoogle Scholar
  97. 97.
    Ho HS, Saunders CJ, Gunther RA, et al. Effector of hemodynamics during laparoscopy: CO2 absorption or intraabdominal pressure? J Surg Res. 1995;59:497–503.CrossRefPubMedGoogle Scholar
  98. 98.
    Joris JL, Noirot DP, Legrand MJ, et al. Hemodynamic changes during laparoscopic cholecystectomy. Anesth Analg. 1993;76:1067–71.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Uen YH, Liang AI, Lee HH. Gasless laparoscopic cholecystectomy during pregnancy. Formosan J Surg. 2001;34:126–31.Google Scholar
  100. 100.
    Sesti F, Pietropolli A, Sesti FF, et al. Gasless laparoscopic surgery during pregnancy: evaluation of its role and usefulness. Eur J Obstet Gynecol Reprod Biol. 2013;170:8–12.CrossRefGoogle Scholar
  101. 101.
    Sahu L, Bupathy A. Evisceration of pregnant uterus through the incisional hernia site. J Obstet Gynaecol Res. 2006;32:338–40.CrossRefPubMedGoogle Scholar
  102. 102.
    Kumar R, Sonika A, Kaberi B, et al. Gravid uterus in an incisional hernia leading to burst abdomen. Internet J Gynecol Obstet. 2004;5:1.Google Scholar
  103. 103.
    Ahmed A, Stephen G, Ukwenya Y. Spontaneous rupture of umbilical hernia in pregnancy: a case report. Oman Med J. 2011;26:285–7.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Wydell S. Umbilical hernia in pregnancy. BMJ. 1963;1:1413–4.PubMedGoogle Scholar
  105. 105.
    Asukai K, Kashiwazaki M, Koizumi K, et al. A case report of a 19-week gravid patient with a dehisced abdominal wound and treated with V.A.C. ATS(®) therapy system. Int Wound J. 2016;13:992.CrossRefPubMedGoogle Scholar
  106. 106.
    Okpala AM, Debrah SA, Mouhajer M. Burst abdomen in pregnancy: a proposed management algorithm. Ghana Med J. 2016;50:115–8.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Kirkpatrick AW, Brenneman FD, McLean R, et al. Is clinical examination an accurate indicator of raised intra-abdominal pressure in critically injured patients. Can J Surg. 2000;43:207–11.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Malbrain M. Different techniques to measure intra-abdominal pressure (IAP): time for a critical re-appraisal. Intensive Care Med. 2004;30:357–71.CrossRefGoogle Scholar
  109. 109.
    Cheatham ML, Safcsak K, Brzezinski SJ, et al. Nitrogen balance, protein loss, and the open abdomen. Crit Care Med. 2007;35:127–31.CrossRefGoogle Scholar
  110. 110.
    Cothren CC, Moore EE, Ciesla DJ, et al. Postinjury abdominal compartment syndrome does not preclude early enteral feeding after definitive closure. Am J Surg. 2004;188:653–8.CrossRefPubMedGoogle Scholar
  111. 111.
    Byrnes MC, Reicks P, Irwin E. Early enteral nutrition can be successfully implemented in trauma patients with an “open abdomen”. Am J Surg. 2010;199:359–63.CrossRefGoogle Scholar
  112. 112.
    Dissanaike S, Pham T, Shalhub S, et al. Effect of immediate enteral feeding on trauma patients with an open abdomen: protection from nosocomial infections. J Am Coll Surg. 2008;207:690–7.CrossRefGoogle Scholar
  113. 113.
    Doig GS, Heighes PT, Simpson F, et al. Early enteral nutrition reduces mortality in trauma patients requiring intensive care: a meta-analysis of randomised controlled trials. Injury. 2011;42:50–6.CrossRefPubMedGoogle Scholar
  114. 114.
    Latenser BA, Kowal-Vern A, Kimball D, et al. A pilot study comparing percutaneous decompression with decompressive laparotomy for acute abdominal compartment syndrome in thermal injury. J Burn Care Rehabil. 2002;23:190–5.CrossRefGoogle Scholar
  115. 115.
    Deenichin GP. Abdominal compartment syndrome. Surg Today. 2008;38:5–19.CrossRefPubMedGoogle Scholar
  116. 116.
    Papavramidis TS, Marinis AD, Pliakos I, et al. Abdominal compartment syndrome - intra-abdominal hypertension: defining, diagnosing, and managing. J Emerg Trauma Shock. 2011;4:279–91.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Sartelli M, Abu-Zidan FM, Ansaloni L, et al. The role of the open abdomen procedure in managing severe abdominal sepsis: WSES position paper. World J Emerg Surg. 2015;10:35.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Schein M, Saadia R, Jamieson JR, et al. The “sandwich technique” in the management of the open abdomen. Br J Surg. 1986;73:369–70.CrossRefGoogle Scholar
  119. 119.
    Kreis BE, de Mol van Otterloo JCA, Kreis RW. Open Abdomen management: a review of its history and a proposed management algorithm. Med Sci Monit. 2013;19:524–33.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Miller PR, Meredith JW, Johnson JC, et al. Prospective evaluation of vacuum-assisted fascial closure after open abdomen: ventral hernia rate is substantially reduced. Ann Surg. 2004;239:608–16.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Boele Van Hensbroek P, Wind J, Dijkgraaf MGW, et al. Temporary closure of the open abdomen: a systematic review on delayed primary fascial closure in patients with an open abdomen. World J Surg. 2009;33:199–207.CrossRefPubMedGoogle Scholar
  122. 122.
    de Moya M, Dunham M, Inaba K, et al. Long-term outcome of a cellular dermal matrix when used for large traumatic open abdomen. J Trauma. 2008;65:349–53.CrossRefPubMedGoogle Scholar
  123. 123.
    Jernigan TW, Fabian TC, Croce MA, et al. Staged management of giant abdominal wall defects: acute and long-term results. Ann Surg. 2003;238:347–9.Google Scholar
  124. 124.
    Staszewicz W, Christodoulou M, Marty F, et al. Damage control surgery by keeping the abdomen open during pregnancy: favorable outcome, a case report. World J Emerg Surg. 2009;24:33.CrossRefGoogle Scholar
  125. 125.
    Morris JA, Rosenbower TJ, Jurkovich GJ, et al. Infant survival after cesarean section for trauma. Ann Surg. 1996;223:481–91.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Shapiro SB, Mumme D. Use of negative pressure wound therapy in the management of wound dehiscence in a pregnant patient. Wounds. 2008;20:46–8.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Goran Augustin
    • 1
    • 2
  1. 1.School of Medicine University of ZagrebZagrebCroatia
  2. 2.Department of SurgeryUniversity Hospital Centre ZagrebZagrebCroatia

Personalised recommendations