Chronic Suppurative Otitis Media (CSOM): A Middle Ear Mucosal Disease

  • Salah Mansour
  • Jacques Magnan
  • Karen Nicolas
  • Hassan Haidar


Chronic suppurative otitis media (CSOM) is defined as a chronic inflammation of the middle ear cleft, which presents with recurrent ear discharges or otorrhea through a tympanic membrane perforation. The prevalence of CSOM remains considerable with a huge impact on the health systems.

An emphasis is made on the etiology and pathogenesis of CSOM with a special attention to the concept of the vicious circle between inflammation and hypoxia . Advances in the molecular biology , genetics, and microbiology of CSOM are covered in detail. Various important risk factors are analyzed. For better understanding of its pathological process, the histopathology of CSOM is illustrated by electron microscopic images. A comprehensive description of its clinical feature is fully done.

Middle ear mechanics related to the sequelae of CSOM are explained for better understanding of the applied principles and the requirements of an appropriate middle ear reconstruction.

CT imaging reading of CSOM sequalae, confronted to the pertinent clinical findings, is able to demonstrate ME condensation images occupying specific anatomic compartments in the middle ear and mastoid and the presence of ossicular lysis and its extent. Moreover, CT Imaging may contribute to the diagnosis of a safe or unsafe ear. In this regard, an algorithm of the different clinico-radiologic strategies is presented.

Furthermore, the medical management of CSOM and relative different surgical procedures are described. Different types of tympanoplasty are schematically illustrated along with their selection criteria in different ear situations. Special considerations are made for the pediatric population.

Surgical techniques, procedure performances and approaches for CSOM sequalae repair in tympanoplasty are fully described along with their hints and pitfalls. A special attention is reserved to the importance of ME aeration in a successful ME reconstruction with an emphasis on the surgical approach to insure adequate aeration. Overall results of Middle Ear surgery and complications are reviewed.


  1. 1.
    Mawson S, Ludman H. Disease of the ear. a textbook of otology. 4th ed. London: Edward Arnold Publication; 1979.Google Scholar
  2. 2.
    Kraemer MJ, Marshall SG, Richardson MA. Etiologic factors in the development of chronic middle ear effusions. Clin Rev Allergy. 1984;2:319–28.PubMedGoogle Scholar
  3. 3.
    Acuin J. Chronic suppurative otitis media. BMJ Clin Evid. 2007;2007. pii 0507Google Scholar
  4. 4.
    Monasta L, Ronfani L, Marchetti F, Montico M, Vecchi Brumatti L, Bavcar A, Grasso D, Barbiero C, Tamburlini G. Burden of disease caused by otitis media: systematic review and global estimates. PLoS One. 2012;7:e36226. Scholar
  5. 5.
    Morris P. Chronic suppurative otitis media. BMJ Clin. 2012;2012:0507.Google Scholar
  6. 6.
    Browning GG, Picozzi GL, Calder IT, Sweeney G. Controlled trial of medical treatment of active chronic otitis media. Br Med J. 1983;287(6398):1024.CrossRefGoogle Scholar
  7. 7.
    Matanda RN, Muyunga KC, Sabue MJ, Creten W, Van de Heyning P. Chronic suppurative otitis media and related complications at the University Clinic of Kinshasa. B-ENT. 2005;1:57–62.PubMedGoogle Scholar
  8. 8.
    Acuin J, World Health Organization Department of Child and Health Adolescent Health and Development and the Team for Prevention of Blindness and Deafness of the World Health Organization Blindness. Chronic suppurative otitis media: burden of illness and management options. Geneva: World Health Organization; 2004.Google Scholar
  9. 9.
    WHO. Investing in health research and development. Report of the Ad Hoc Committee on health research funding relating to future intervention options. Geneva: World Health Organization; 1996.Google Scholar
  10. 10.
    Murray CJL, Lopez AD. Deaths by age, sex and cause (thousands), 1990. In: Murray CJL, Lopez AD, editors. Global burden of disease. Geneva: World Health Organization; 1996. p. 433–68.Google Scholar
  11. 11.
    Berman S. Otitis media in children. N Engl J Med. 1995;332(23):1560–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Chotmongkol V, Sangsaard S. Intracranial complications of chronic suppurative otitis media. Southeast Asian J Trop Med Public Health. 1992;23(3):510–3.PubMedGoogle Scholar
  13. 13.
    Coticchia JM, Chen M, Sachdeva L, Mutchnick S. New paradigms in the pathogenesis of otitis media in children. Front Pediatr. 2013;1:52.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Taylor PS, Faeth I, Marks MK, Del Mar CB, Skull SA, Pezzullo ML, Havyatt SM, Coates HL. Cost of treating otitis media in Australia. Expert Rev Pharmacoecon Outcomes Res. 2009;9:133–41.CrossRefPubMedGoogle Scholar
  15. 15.
    Bluestone CD. Impact of evolution on the eustachian tube. Laryngoscope. 2008;118:522–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Bluestone CD, Bluestone MB, Coulter J. The eustachian tube: structure, function, role in otitis media. Hamilton: B C Decker; 2005.Google Scholar
  17. 17.
    Bluestone CD, Klein JO. Otitis media in infants and children. Hamilton: B C Decker; 2007.Google Scholar
  18. 18.
    Bluestone CD, Swarts JD. Human evolutionary history: consequences for the pathogenesis of otitis media. Otolanryng Head Neck. 2010;143:739–44.CrossRefGoogle Scholar
  19. 19.
    de Ru JA, Grote JJ. Otitis media with effusion: disease or defense? A review of the literature. Int J Pediatr Otorhinolaryngol. 2004;68:331–9.PubMedGoogle Scholar
  20. 20.
    Sade J, Ar A. Middle ear and auditory tube: middle ear clearance, gas exchange, and pressure regulation. Otolanryng Head Neck. 1997;116:499–524.CrossRefGoogle Scholar
  21. 21.
    Kahn CM, Line S. The merck veterinary manual. New Jersey: Merck; 2010.Google Scholar
  22. 22.
    Ichimiya I, Kawauchi H, Mogi G. Analysis of immunocompetent cells in the middle ear mucosa. Arch Otolaryngol Head Neck Surg. 1990;116:324–30.CrossRefPubMedGoogle Scholar
  23. 23.
    Lim DJ, Chun YM, Lee HY, et al. Cell biology of tubotympanum in relation to pathogenesis of otitis media—a review. Vaccine. 2000;19(Suppl 1):S17–25.CrossRefPubMedGoogle Scholar
  24. 24.
    Kaur R, Kim T, Casey JR, Pichichero ME. Antibody in middle ear fluid of children originates predominantly from sera and nasopharyngeal secretions. Clin Vaccine Immunol. 2012;19(10):1593–6.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Buchmann K. Evolution of innate immunity: clues from invertebrates via fish to mammals. Front Immunol. 2014;5:459. Scholar
  26. 26.
    Vernacchio L, Lesko SM, Vezina RM, et al. Racial/ethnic disparities in the diagnosis of otitis media in infancy. Int J Pediatr Otorhinolaryngol. 2004;68:795–804.CrossRefPubMedGoogle Scholar
  27. 27.
    Park CH, Kogan MD, Overpeck MD, et al. Black-white differences in health care utilization among US children with frequent ear infections. Pediatrics. 2002;109:E84.CrossRefPubMedGoogle Scholar
  28. 28.
    Sade J, Fuchs C. Secretory otitis media in adults: II the role of mastoid pneumatization as a prognostic factor. Ann Otol Rhinol Laryngol. 1997;106(1):37–40.CrossRefPubMedGoogle Scholar
  29. 29.
    Hasegawa MI, Shinnabe A, Kanazawa H, Iino Y, Yoshida N. Clinical characteristics of chronic perforated otitis media in different age groups. J Int Adv Otol. 2017. [Epub ahead of print]
  30. 30.
    Wang DN, Li J, Zhao SQ, Wang Y, Yang L. Role of FOXP3 CD4 CD25 T cells in otitis media with effusion. Chin Arch Otolaryngol Head Neck Surg. 2013;20:126–8.Google Scholar
  31. 31.
    Sekiyama K, et al. The role of vascular endothelial growth factor in pediatric otitis media with effusion. Auris Nasus Larynx. 2011;38(3):319–24.CrossRefPubMedGoogle Scholar
  32. 32.
    Elmorsy S, Shabana YK, Raouf AA, Naggar ME, Bedir T, Taher S, Fath-Aallah M. The role of IL-8 in different types of otitis media and bacteriological correlation. J Int Adv Otol. 2010;6:269–73.Google Scholar
  33. 33.
    Si Y, Zhang ZG, Chen SJ, Zheng YQ, Chen YB, Liu Y, Jiang H, Feng LQ, Huang X. Attenuated TLRs in middle ear mucosa contributes to susceptibility of chronic suppurative otitis media. Hum Immunol. 2014;75:771–6. Scholar
  34. 34.
    Stenfors LE, Raisanen S. Opsonization of middle ear bacteria during chronic suppurative and secretory otitis media. Acta Otolaryngol. 1992;112(1):96–101.CrossRefPubMedGoogle Scholar
  35. 35.
    Stenfors LE, Raisanen S. Immunoglobulin-coated bacteria in effusions from secretory and chronic suppurative otitis media. Am J Otolaryngol. 1991;12(3):161–4.CrossRefPubMedGoogle Scholar
  36. 36.
    Veenhoven R, Rijkers G, Schilder A, Adelmeijer J, Uiterwaal C, Kuis W, et al. Immunoglobulins in otitis-prone children. Pediatr Res. 2004;55(1):159–62.CrossRefPubMedGoogle Scholar
  37. 37.
    Gross S, Blaiss MS, Herrod HG. Role of immunoglobulin subclasses and specific antibody determinations in the evaluation of recurrent infection in children. J Pediatr. 1992;121(4):516–22.CrossRefPubMedGoogle Scholar
  38. 38.
    Stenfors LE, Raisanen S. Secretory IgA- and IgG-coated bacteria in chronically discharging ears. J Laryngol Otol. 1991;105(7):515–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Segade F, Daly KA, Allred D, Hicks PJ, Cox M, Brown M, Hardisty-Hughes RE, Brown SD, Rich SS, Bowden DW. Association of the FBXO11 gene with COME/ROM in the Minnesota COME/ROM family study. Arch Otolaryngol Head Neck Surg. 2006;132(7):729–33.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rye MS, Wiertsema SP, Scaman ES, Oommen J, Sun W, Francis RW, Ang W, Pennell CE, Burgner D, Richmond P, Vijayasekaran S, Coates HL, Brown SD, Blackwell JM, Jamieson SE. FBXO11, a regulator of the TGFb pathway, is associated with severe otitis media in Western Australian children. Genes Immun. 2011;12:352–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Rye MS, Blackwell JM, Jamieson SE. Genetic susceptibility to otitis media in childhood. Laryngoscope. 2012;122(3):665–75.CrossRefPubMedGoogle Scholar
  42. 42.
    Rye MS, Warrington NM, Scaman ES, Vijayasekaran S, Coates HL, Anderson D, Pennell CE, Blackwell JM, Jamieson SE. Genome-wide association study to identify the genetic determinants of otitis media susceptibility in childhood. PLoS One. 2012;7(10):e48215.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ehrlich GD, Veeh R, Wang X, Costerton JW, Hayes JD, FZ H, Daigle BJ, Ehrlich MD, Post JC. Mucosal biofilm formation on middle-ear mucosa in the chinchilla model of otitis media. JAMA. 2002;287(13):1–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Tos M, Caye-Thomasen P. Mucous glands in the middle ear—what is known and what is not. ORL J Otorhinolaryngol Relat Spec. 2002;64(2):86–94.CrossRefPubMedGoogle Scholar
  45. 45.
    Tos M, Bak-Pedersen K. Density of mucous glands in a biopsy material of chronic secretory otitis media. Acta Otolaryngol. 1973;75(1):55–60.CrossRefPubMedGoogle Scholar
  46. 46.
    Haidar H, Sheikh R, Larem A, Elsaadi A, Abdulkarim H, et al. Ossicular chain erosion in chronic suppurative otitis media. Otolaryngol (Sunnyvale). 2015;5:203. Scholar
  47. 47.
    Voss SE, Rosowski JJ, Merchant SN, Peake WT. Middle-ear function with tympanic-membrane perforations: I—measurements and mechanisms. J Acoust Soc Am. 2001;110:1432–44.CrossRefPubMedGoogle Scholar
  48. 48.
    Voss SE, Rosowski JJ, Merchant SN, Peake WT. How do tympanic-membrane perforations affect human middle-ear sound transmission? Acta Otolaryngol. 2001;121:169–73.CrossRefPubMedGoogle Scholar
  49. 49.
    Mehta RP, Rosowski JJ, Voss SE, O’Neil E, Merchant SN. Determinants of hearing loss in perforations of the tympanic membrane. Otol Neurotol. 2006;27(2):136–43.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Merchant SN, Ravicz ME, Puria S, Voss SE, Whittemore KR Jr, Peake WT, Rosowski JJ. Analysis of middle-ear mechanics and application to diseased and reconstructed ears. Am J Otolaryngol. 1997;18:139–54.Google Scholar
  51. 51.
    Nakajima HH, Pisano DV, Roosli C, Hamade MA, Merchant GR, Mafoud L, Halpin CF, Rosowski JJ, Merchant SN. Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study. Ear Hear. 2012;33:35–43.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Peake W, Rosowski JJ, Lynch TJ. Middle-ear transmission: acoustic versus ossicular coupling in cat and human. Hear Res. 1992;57:245–68.CrossRefPubMedGoogle Scholar
  53. 53.
    Sheikh R, Haidar H, Abdulkarim H, Aslam W, Larem A, Alsaadi A, Alqahtani A. Preoperative predictors in chronic suppurative otitis media for ossicular chain discontinuity: a cross-sectional study. Audiol Neurootol. 2016;21(4):231–6.CrossRefPubMedGoogle Scholar
  54. 54.
    Huang M, Dulon D, Schacht J. Outer hair cells as potential targets of inflammatory mediators. Ann Otol Rhinol Laryngol. 1990;(Suppl 148):35–8.CrossRefGoogle Scholar
  55. 55.
    Cureoglu S, Schachern PA, Paparella MM, Lindgren BR. Cochlear changes in chronic otitis media. Laryngoscope. 2004;114:622–6. Scholar
  56. 56.
    Joglekar S, Morita N, Cureoglu S, Schachern PA, Deroee AF, Tsuprun V, Paparella MM, Juhn SK. Cochlear pathology in human temporal bones with otitis media. Acta Otolaryngol. 2010;130:472–6. Scholar
  57. 57.
    Jensen RG, Koch A, Homøe P. The risk of hearing loss in a population with a high prevalence of chronic suppurative otitis media. Int J Pediatr Otorhinolaryngol. 2013;77:1530–5. Scholar
  58. 58.
    Yoshida H, Miyamoto I, Takahashi H. Is sensorineural hearing loss with chronic otitis media due to infection or aging in older patients? Auris Nasus Larynx. 2009;36:269–73. Scholar
  59. 59.
    Vaidya S, Sharma JK, Singh G. Study of outcome of tympanoplasties in relation to size and site of tympanic membrane perforation. Indian J Otolaryngol Head Neck Surg. 2014;66:341–6. Scholar
  60. 60.
    Gluth MB, McDonald DR, Weaver AL, Bauch CD, Beatty CW, Orvidas LJ. Management of eustachian tube dysfunction with nasal steroid spray: a prospective, randomized, placebo-controlled trial. Arch Otolaryngol Head Neck Surg. 2011;137:449–55.CrossRefPubMedGoogle Scholar
  61. 61.
    Bremond G, Wayoff M, Jost G. Les étapes du traitement de l’otite chronique chez l’adulte Librairie Arnette, Paris; 1966. 256 pages, p. 192–3.Google Scholar
  62. 62.
    Samson JE, Magadán AH, Sabri M, Moineau S. Revenge of the phages: defeating bacterial defences. Nat Rev Microbiol. 2013;11:675–87. Scholar
  63. 63.
    Viertel TM, Ritter K, Horz HP. Viruses versus bacteria—novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J Antimicrob Chemother. 2014;69:2326–36. Scholar
  64. 64.
    Qadir MI. Review: phage therapy: a modern tool to control bacterial infections. Pak J Pharm Sci. 2015;28:265–70.PubMedGoogle Scholar
  65. 65.
    Golkar Z, Bagasra O, Pace DG. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J Infect Dev Ctries. 2014;8:129–36. Scholar
  66. 66.
    Jassim SA, Limoges RG. Natural solution to antibiotic resistance: bacteriophages ‘The Living Drugs’. World J Microbiol Biotechnol. 2014;30:2153–70. Scholar
  67. 67.
    Wright A, Hawkins CH, Anggård EE, Harper DR. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol. 2009;34:349–57. Scholar
  68. 68.
    Bluestone CD. Studies in otitis media: Children’s Hospital of Pittsburgh-University of Pittsburgh progress report—2004. Laryngoscope. 2004;114:1.CrossRefPubMedGoogle Scholar
  69. 69.
    Healy GB, Rosbe KW. Otitis media and middle ear effusions. In: Snow Jr JB, Ballenger JJ, editors. Ballenger’s otorhinolaryngology head and neck surgery. 16th ed. Hamilton, ON: BC Decker Inc; 2003. p. 249.Google Scholar
  70. 70.
    Zuk PA, Zhu M, Ashjian PV, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Colletti V, Fiorino FG, Sittoni V. Minisculptured ossicle grafts versus implants: long-term results. Am J Otolaryngol. 1987;8:553–9.Google Scholar
  72. 72.
    Blanchard J, et al. A longterm view of myringoplasty in children. J Laryngol Otol. 1990;104:758–62.CrossRefGoogle Scholar
  73. 73.
    Vartiainen E, Nuutinen J. Long-term hearing results of one-stage tympanoplasty for chronic otitis media. Eur Arch Otorhinolaryngol. 1992;249(6):329–31.CrossRefPubMedGoogle Scholar
  74. 74.
    Goldman DJ, Nalebuff J, Druss JG. Experimental observations on prosthetic materials in stapedial surgery with special reference to the use of Teflon. Laryngoscope. 1962;72:169–81.CrossRefPubMedGoogle Scholar
  75. 75.
    Withers BT, Hatsfield SE, Richmond RW. Drum and middle ear grafts in cats. Laryngoscope. 1963;73:1022–43.CrossRefPubMedGoogle Scholar
  76. 76.
    Yung MW. Literature review of alloplastic materials in ossiculoplasty. J Laryngol Otol. 2003;117:431–6.PubMedGoogle Scholar
  77. 77.
    House JW, Teufert KB. Extrusion rates and hearing results in ossicular reconstruction. Otolaryngol Head Neck Surg. 2001;125:135–41.CrossRefPubMedGoogle Scholar
  78. 78.
    Mehta RP, Ravicz ME, Rosowski JJ, Merchant SN. Middle-ear mechanics of Type III tympanoplasty (stapes columella): I. Experimental studies. Otol Neurotol. 2003;24(2):176–85.CrossRefPubMedGoogle Scholar
  79. 79.
    Brackmann DE, Sheehy JL, Luxford WM. TORPs and PORPs in tympanoplasty: a review of 1042 operations. Otolaryngol Head Neck Surg. 1984;92:32–7.CrossRefPubMedGoogle Scholar
  80. 80.
    Murugasu E, Puria S, Roberson JB Jr. Malleus-to-footplate versus malleus-to-stapes-head ossicular reconstruction prostheses: temporal bone pressure gain measurements and clinical audiological data. Otol Neurotol. 2005;26(4):572–82.CrossRefPubMedGoogle Scholar
  81. 81.
    Vlaming MS, Feenstra L. Studies on the mechanics of the reconstructed human middle ear. Clin Otolaryngol Allied Sci. 1986;11(6):411–22.CrossRefPubMedGoogle Scholar
  82. 82.
    Nishihara S, Goode RL. Experimental study of the acoustic properties of incus replacement prostheses in a human temporal bone model. Am J Otolaryngol. 1994;15(4):485–94.Google Scholar
  83. 83.
    Puria S, Kunda LD, Roberson JB Jr, Perkins RC. Malleus-to-footplate ossicular reconstruction prosthesis positioning: cochleovestibular pressure optimization. Otol Neurotol 2005;26(3):368–79.CrossRefGoogle Scholar
  84. 84.
    Goode RL, Nishihara S. Experimental models of ossiculoplasty. Otolaryngol Clin N Am. 1994;27(4):663–75.Google Scholar
  85. 85.
    Bance M, Campos A, Wong L, Morris DP, van Wijhe R. How does prosthesis head size affect vibration transmission in ossiculoplasty? Otolaryngol Head Neck Surg. 2007;137(1):70–3.CrossRefPubMedGoogle Scholar
  86. 86.
    Morris DP, Bance M, Van Wijhe RG. How do cartilage and other material overlay over a prosthesis affect its vibration transmission properties in ossiculoplasty? Otolaryngol Head Neck Surg. 2004;131(4):423–8.CrossRefPubMedGoogle Scholar
  87. 87.
    Babu S, Seidman M. Ossicular reconstruction using bone cement. Otol Neurotol. 2004;25:98–101. 1188CrossRefPubMedGoogle Scholar
  88. 88.
    Elsheikh MN, Elsherief H, Elsherief S. Physiologic reestablishment of ossicular continuity during excision of retraction pockets. Arch Otolaryngol Head Neck Surg. 2006;132:196–9.CrossRefPubMedGoogle Scholar
  89. 89.
    Goebel JA, Jacob A. Use of Mimix hydroxyapatite bone cement for difficult ossicular reconstruction. Otolaryngol Head Neck Surg. 2005;132:727–34.CrossRefPubMedGoogle Scholar
  90. 90.
    Ozer E, Bayazit YA, Kanlikama M, et al. Incudostapedial rebridging ossiculoplasty with bone cement. Otol Neurotol. 2002;23:643–6.CrossRefPubMedGoogle Scholar
  91. 91.
    Altamimi Z, Haidar H, Larem A, et al. Innovation in otology: stability of ossicular reconstruction. J Bioeng Biomed Sci. 2016;6(5 (Suppl))Google Scholar
  92. 92.
    Merchant SN, McKenna MJ, Mehta RP, et al. Middle ear mechanics of type III tympanoplasty (stapes columella): II. Clinical studies. Otol Neurotol. 2003;24:186–94.CrossRefPubMedGoogle Scholar
  93. 93.
    Kanazawa Y, Naito Y, Tona R, et al. Predictive value of middle ear aeration before second-stage operation in staged tympanoplasty with soft-wall reconstruction. Acta Otolaryngol. 2014;134:135–9.CrossRefPubMedGoogle Scholar
  94. 94.
    Mansour S, Nicolas K, Naim A, Yamine F, Moukarzel N, Nehme A. Inflammatory chronic otitis media and the anterior epitympanic recess. J Otolaryngol. 2005;34(3):149–59.CrossRefPubMedGoogle Scholar
  95. 95.
    Yetixser S, Karapinar U. Middle ear ventilation function in patients with myringoplasty alone and myringoplasty plus mastoidectomy. Kulak Burun Bogaz Ihtis Derg. 2011;21:179–83.CrossRefGoogle Scholar
  96. 96.
    Bahmad F Jr, Merchant SN. Histopathology of ossicular grafts and implants in chronic otitis media. Ann Otol Rhinol Laryngol. 2007;116(3):181–91.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Onal K, Uguz MZ, Kazikdas KC, Gursoy ST, Gokce H. A multivariate analysis of otological, surgical and patient-related factors in determining success in myringoplasty. Clin Otolaryngol. 2005;30(2):115–20.CrossRefPubMedGoogle Scholar
  98. 98.
    Nambiar SS. Tympanoplasty type I evaluation of the surgical results and its impact as the treatment modality in chronic otitis media. J Evid Based Med Health. 2017;4(58):3507–11. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Salah Mansour
    • 1
  • Jacques Magnan
    • 2
  • Karen Nicolas
    • 3
    • 4
  • Hassan Haidar
    • 5
  1. 1.Lebanese University, Department of OtolaryngologyHNS Amoudi Center Boulevard MazraaBeirutLebanon
  2. 2.Aix-Marseille UniversityMarseilleFrance
  3. 3.Department of RadiologyMiddle East Institute of HealthBsalimLebanon
  4. 4.Lebanese UniversityBeirutLebanon
  5. 5.Department of OtolaryngologyHamad Medical Corporation, Weill Cornell Medical CollegeDohaQatar

Personalised recommendations