Advertisement

GRASP Heuristics for a Generalized Capacitated Ring Tree Problem

  • Gabriel BayáEmail author
  • Antonio Mauttone
  • Franco Robledo
  • Pablo Romero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10710)

Abstract

This paper introduces a new mathematical optimization problem, inspired in the evolution of fiber optics communication. Real-life implementations must address a cost-robustness tradeoff. Typically, real topologies are hierarchically organized in backbone and access networks. The backbone is two-node-connected, while the access network usually considers either leaf nodes or elementary paths, directly connected to the backbone. We define the Capacitated Two-Node Survivable Tree Problem (CTNSTP for short). The backbone consists of at most m two-node-connected structures with a perfect depot as a common node. The access network consists of trees directly connected to the backbone. The CTNSTP belongs to the NP-Complete computational class. A GRASP heuristic enriched with a Variable Neighborhood Descent (VND) is provided. Certain neighborhoods of our VND include exact models based on Integer Linear Programming formulations. The comparison among recent works in the field confirm remarkable savings with the novel proposal.

Keywords

Network survivability CTNSTP GRASP VND 

References

  1. 1.
    Baldacci, R., Dell’Amico, M., González, J.J.S.: The capacitated m-ring-star problem. Oper. Res. 55(6), 1147–1162 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bayá, G., Mauttone, A., Robledo, F.: The capacitated m two node survivable star problem. Yugoslav J. Oper. Res. 27(3), 341–366 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bayá, G., Mauttone, A., Robledo, F., Romero, P.: Capacitated m two-node survivable star problem. Electron. Notes Discrete Math. 52, 253–260 (2016). INOC 2015 7th International Network Optimization ConferenceMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bhandari, R.: Optimal physical diversity algorithms and survivable networks. In: Proceedings of Second IEEE Symposium on Computers and Communications, 1997, pp. 433–441. IEEE (1997)Google Scholar
  5. 5.
    Dreyfus, S.E., Wagner, R.A.: The steiner problem in graphs. Networks 1(3), 195–207 (1971)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hill, A.: Multi-exchange neighborhoods for the capacitated ring tree problem. In: Dimov, I., Fidanova, S., Lirkov, I. (eds.) NMA 2014. LNCS, vol. 8962, pp. 85–94. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15585-2_10CrossRefGoogle Scholar
  7. 7.
    Hill, A., Voß, S.: Optimal capacitated ring trees. EURO J. Comput. Optim. 4(2), 137–166 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hoshino, E.A., de Souza, C.C.: A branch-and-cut-and-price approach for the capacitated m-ring-star problem. Discrete Appl. Math. 160(18), 2728–2741 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)CrossRefGoogle Scholar
  10. 10.
    Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Labbé, M., Laporte, G., Martín, I.R., González, J.J.S.: The ring star problem: polyhedral analysis and exact algorithm. Networks 43(3), 177–189 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Laporte, G.: The traveling salesman problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Monma, C., Munson, B.S., Pulleyblank, W.R.: Minimum-weight two-connected spanning networks. Math. Prog. 46(1–3), 153–171 (1990)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Recoba, R., Robledo, F., Romero, P., Viera, O.: Two-node-connected star problem. Int. Trans. Oper. Res. 25(2), 523–543 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Resende, M.G.C., Ribeiro, C.C.: GRASP: Greedy Randomized Adaptive Search Procedures. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies, pp. 287–312. Springer, New York (2014).  https://doi.org/10.1007/978-1-4614-6940-7_11Google Scholar
  16. 16.
    Robledo, F.: GRASP heuristics for Wide Area Network design. Ph.D. thesis, INRIA/IRISA, Université de Rennes I, Rennes, France (2005)Google Scholar
  17. 17.
    Zhang, Z., Qin, H., Lim, A.: A memetic algorithm for the capacitated m-ringstar problem. Appl. Intell. 40(2), 305–321 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Gabriel Bayá
    • 1
    Email author
  • Antonio Mauttone
    • 1
  • Franco Robledo
    • 1
  • Pablo Romero
    • 1
  1. 1.Departamento de Investigación Operativa, Facultad de IngenieríaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations