Advertisement

Estimating Dynamics of Honeybee Population Densities with Machine Learning Algorithms

  • Ziad SalemEmail author
  • Gerald Radspieler
  • Karlo Griparić
  • Thomas Schmickl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10710)

Abstract

The estimation of the density of a population of behaviourally diverse agents based on limited sensor data is a challenging task. We employed different machine learning algorithms and assessed their suitability for solving the task of finding the approximate number of honeybees in a circular arena based on data from an autonomous stationary robot’s short range proximity sensors that can only detect a small proportion of a group of bees at any given time. We investigate the application of different machine learning algorithms to classify datasets of pre-processed, highly variable sensor data. We present a new method for the estimation of the density of bees in an arena based on a set of rules generated by the algorithms and demonstrate that the algorithm can classify the density with good accuracy. This enabled us to create a robot society that is able to develop communication channels (heat, vibration and airflow stimuli) to an animal society (honeybees) on its own.

Keywords

Machine learning Data mining Classification algorithms Density estimation Robots Honeybees 

Notes

Acknowledgments

This study was supported by the EU FP7 FET-Proactive project \(ASSISI_{bf}\), grant no. 601074.

References

  1. 1.
    Acuña, E., Rodriguez, C.: The treatment of missing values and its effect on classifier accuracy. In: Banks, D., McMorris, F.R., Arabie, P., Gaul, W. (eds.) Classification, Clustering, and Data Mining Applications. Studies in Classification, Data Analysis, and Knowledge Organisation, pp. 639–647. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-642-17103-1_60CrossRefGoogle Scholar
  2. 2.
    Cohen, W.W.: Fast effective rule induction. In: Proceedings of the Twelfth International Conference on Machine Learning, pp. 115–123. Morgan Kaufmann, San Francisco (1995)CrossRefGoogle Scholar
  3. 3.
    Duin, R.P.: A note on comparing classifiers. Pattern Recogn. Lett. 17(5), 529–536 (1996)CrossRefGoogle Scholar
  4. 4.
    Foody, G.M.: Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogram. Eng. Remote Sens. 70(5), 627–633 (2004)CrossRefGoogle Scholar
  5. 5.
    Fürnkranz, J., Widmer, G.: Incremental reduced error pruning. In: Proceedings of the 11th International Conference on Machine Learning (ML-1994), pp. 70–77 (1994)CrossRefGoogle Scholar
  6. 6.
    Ganganwar, V.: An overview of classification algorithms for imbalanced datasets. Int. J. Emerg. Technol. Adv. Eng. 2(4), 42–47 (2012)Google Scholar
  7. 7.
    Giomi, L., Hawley-Weld, N., Mahadevan, L.: Swarming, swirling and stasis in sequestered bristle-bots. In: Proceedings of the Royal Society a Mathematical Physical and Engineering, vol. 469, p. 20120637. The Royal Society (2013)Google Scholar
  8. 8.
    Griparić, K., Haus, T., Miklić, D., Bogdan, S.: Combined actuator sensor unit for interaction with honeybees. In: 2015 IEEE Sensors Applications Symposium (SAS), pp. 1–5. IEEE (2015)Google Scholar
  9. 9.
    Hämäläinen, W., Vinni, M.: Classifiers for educational data mining. In: Handbook of Educational Data Mining, pp. 57–74 (2010)Google Scholar
  10. 10.
    Heinrich, B.: The Hot-Blooded Insects: Strategies and Mechanisms of Thermoregulation. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-662-10340-1CrossRefGoogle Scholar
  11. 11.
    Jordan, M., Mitchell, T.: Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kotsiantis, S.B.: Supervised machine learning: a review of classification techniques. Informatica - Int. J. Comput. Inform. 31(3), 249–268 (2007)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kotthoff, L., Gent, I.P., Miguel, I.: A preliminary evaluation of machine learning in algorithm selection for search problems. In: Fourth Annual Symposium on Combinatorial Search (2011)Google Scholar
  14. 14.
    Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill, Inc., New York (1997)zbMATHGoogle Scholar
  15. 15.
    Mohamed, W.N.H.W., Salleh, M.N.M., Omar, A.H.: A comparative study of reduced error pruning method in decision tree algorithms. In: IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp. 392–397. IEEE (2012)Google Scholar
  16. 16.
    Polić, M., Salem, Z., Griparić, K., Bogdan, S., Schmickl, T.: Estimation of moving agents density in 2D space based on LSTM neural network. In: IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), pp. 1–8. IEEE (2017)Google Scholar
  17. 17.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Elsevier, San Francisco (2014)Google Scholar
  18. 18.
    Salem, Z.: Enhanced computer algorithms for machine learning. Ph.D. thesis, Intelligent system Research laboratory. Cardiff University, Wales, UK (2002)Google Scholar
  19. 19.
    Salem, Z., Schmickl, T.: The efficiency of the rules-4 classification learning algorithm in predicting the density of agents. Cogent Eng. 1(1), 986262 (2014)CrossRefGoogle Scholar
  20. 20.
    Schmickl, T., et al.: ASSISI: mixing animals with robots in a hybrid society. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS (LNAI), vol. 8064, pp. 441–443. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39802-5_60CrossRefGoogle Scholar
  21. 21.
    Schmickl, T., Szopek, M., Bodi, M., Hahshold, S., Radspieler, G., Thenius, R., Bogdan, S., Miklić, D., Griparić, K., Haus, T., Kernbach, S., Kernbach, O.: Assisi: charged hot bees shakin’in the spotlight. In: 2013 IEEE 7th International Conference on Self-Adaptive and Self-Organizing Systems, pp. 259–260. IEEE (2013)Google Scholar
  22. 22.
    Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques, 4th edn. Morgan Kaufmann, San Francisco (2016)Google Scholar
  23. 23.
    Zahadat, P., Hahshold, S., Thenius, R., Crailsheim, K., Schmickl, T.: From honeybees to robots and back: division of labor based on partitioning social inhibition. Bioinspiration & Biomimetics 10(6), 066005 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ziad Salem
    • 1
    Email author
  • Gerald Radspieler
    • 1
  • Karlo Griparić
    • 2
  • Thomas Schmickl
    • 1
  1. 1.Artificial Life Lab at the Institute for ZoologyKarl-Franzens-University GrazGrazAustria
  2. 2.LARICS Lab at the Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia

Personalised recommendations