Effect of a Drought on Cork Growth Along the Production Cycle

  • Carla Leite
  • Vanda Oliveira
  • Alexandra Lauw
  • Helena Pereira
Chapter
Part of the Climate Change Management book series (CCM)

Abstract

Cork oak (Quercus suber L.) grows in the western Mediterranean region for which the most recent climatic scenarios predict higher temperatures and lower precipitation than usual values. Cork, the tree’s outerbark, is obtained under a sustainable management system and has a considerable economic importance for forest producers and industry. Cork’s specific set of properties allows multiple usages, from cork stoppers to insulating materials. This paper presents the first results of a dendroclimatological exploratory study about the effect of a severe drought in different moments of the cork 9-year production cycle, e.g. beginning, middle or end of the cycle. The results showed that the response of the phellogen (cork cambium) to the severe drought of 2004–2006 is independent of its age. In a mitigating strategy for the impact of the forthcoming more frequent drought events, and since cork growth decreases due to the reduction of water availability, forest managers should extend cork growth cycles and/or water cork oak stands. This is a way to ensure the production of cork with enough thickness to produce stoppers, thereby contributing to the overall sustainability of the cork sector in a climate change context.

Keywords

Drought Cork oak Mediterranean region Climate change 

Notes

Acknowledgements

The research was carried out under the framework of Centro de Estudos Florestais, a research unit funded by Fundação para a Ciência e a Tecnologia, Portugal (UID/AGR/00239/2013). Carla Leite acknowledges a Ph.D grant by FCT under the SUSFOR doctoral program (PD/BD/113937/2015).

The authors acknowledge the collaboration of Associação dos Produtores Florestais do Concelho de Coruche e Limítrofes (APFC) in material supply.

References

  1. APCOR. (2016). Anuário de cortiça 2016 APCOR. site accessed 9th Mar 2017. http://www.apcor.pt/wp-content/uploads/2016/09/Boletim-estatistico-2016.pdf.
  2. Besson, C., Lobo-do-Vale, R., Rodrigues, M., Almeida, P., Herd, A., Grant, O., et al. (2014). Cork oak physiological responses to manipulated water availability in a Mediterranean woodland. Agricultural and Forest Meteorology, 184, 230–242.  https://doi.org/10.1016/j.agrformet.2013.10.004.CrossRefGoogle Scholar
  3. Braeuning, A., Bolte, A., Nabais, C., Rossi, S., & Sass-Klaassen, U. (2017). Studying tree responses to extreme events. Frontiers in Plant Science, 8, 506.  https://doi.org/10.3389/fpls.2017.00506.CrossRefGoogle Scholar
  4. Bunn, A. (2008). A dendrochronology program library in R (dplR). Dendrochronologia, 26(2), 115–124.  https://doi.org/10.1016/j.dendro.2008.01.002.CrossRefGoogle Scholar
  5. Caritat, A., Gutiérrez, E., & Molinas, M. (2000). Influence of weather on cork-ring width. Tree Physiology, 20(13), 893–900.  https://doi.org/10.1093/treephys/20.13.893.CrossRefGoogle Scholar
  6. Caritat, A., Molinas, M., & Gutierrez, E. (1996). Annual cork-ring width variability of Quercus suber L. in relation to temperature and precipitation (Extremadura, southwestern Spain). Forest Ecology and Management, 86(1), 113–120.  https://doi.org/10.1016/S0378-1127(96)03787-5.CrossRefGoogle Scholar
  7. Cherubini, P., Gartner, B., Tognetti, R., Bräker, O., Schoch, W., & Innes, J. L. (2003). Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biological Reviews, 78(1), 119–148. https://doi.org/10.1017/S1464793102006000 
  8. Cook, E., & Kairiukstis, L. (1989). Methods of dendrochronology: Applications in the environmental sciences. Dordrech: Springer Science & Business Media. ISBN 978-90-481-4060-2.Google Scholar
  9. Costa, A., Barbosa, I., Roussado, C., Graça, J., & Spiecker, H. (2016). Climate response of cork growth in the Mediterranean oak (Quercus suber L.) woodlands of southwestern Portugal. Dendrochronologia, 38, 72–81.  https://doi.org/10.1016/j.dendro.2016.03.007.CrossRefGoogle Scholar
  10. Costa, A., Pereira, H., & Oliveira, A. (2001). A dendroclimatological approach to diameter growth in adult cork-oak trees under production. Trees, 15(7), 438–443.  https://doi.org/10.1007/s004680100119.CrossRefGoogle Scholar
  11. Evert, R. F. (2006). Esau’s plant anatomy: Meristems, cells, and tissues of the plant body: Their structure, function, and development. London: Wiley. ISBN 0-470-04737-2.CrossRefGoogle Scholar
  12. Fritts, H. (1976). Tree rings and climate (1st ed.). London: Academic Press. ISBN 978-0-323-14528-2.Google Scholar
  13. García-Herrera, R., Hernández, E., Barriopedro, D., Paredes, D., Trigo, R., Trigo, I., et al. (2007). The outstanding 2004/05 drought in the Iberian Peninsula: Associated atmospheric circulation. Journal of Hydrometeorology, 8(3), 483–498.  https://doi.org/10.1175/JHM578.1.CrossRefGoogle Scholar
  14. Gea-Izquierdo, G., Fernández-de-Uña, L., & Cañellas, I. (2013). Growth projections reveal local vulnerability of Mediterranean oaks with rising temperatures. Forest Ecology and Management, 305, 282–293.  https://doi.org/10.1016/j.foreco.2013.05.058.CrossRefGoogle Scholar
  15. IPCC. (2014). In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, et al. (Eds.) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1132 pp.Google Scholar
  16. Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., et al. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259, 698–709.  https://doi.org/10.1016/j.foreco.2009.09.02.CrossRefGoogle Scholar
  17. Natividade, J. (1950). Subericultura. Lisboa: Ministério da Economia–Direcção Geral dos Serviços Florestais e Aquícolas.Google Scholar
  18. Oliveira, V., Lauw, A., & Pereira, H. (2016). Sensitivity of cork growth to drought events: Insights from a 24-year chronology. Climatic Change, 137(1), 261–274.  https://doi.org/10.1007/s10584-016-1680-7.CrossRefGoogle Scholar
  19. Pereira, H. (2007). Cork: Biology, production and uses. Amsterdam: Elsevier. ISBN 0-08-047686-4.Google Scholar
  20. Piayda, A., Dubbert, M., Rebmann, C., Kolle, O., Silva, F., Correia, A., et al. (2014). Drought impact on carbon and water cycling in a Mediterranean Quercus suber L. woodland during the extreme drought event in 2012. Biogeosciences, 11(24), 7159–7178.  https://doi.org/10.5194/bg-11-7159-2014.CrossRefGoogle Scholar
  21. Pizzurro, G., Maetzke, F., & Veca, D. (2010). Differences of raw cork quality in productive cork oak woods in Sicily in relation to stand density. Forest Ecology and Management, 260(5), 923–929.  https://doi.org/10.1016/j.foreco.2010.06.013.CrossRefGoogle Scholar
  22. R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/.
  23. Santos, F. D., & Miranda, P. (2006). Alterações climáticas em Portugal. Cenários, Impactos E Medidas de Adaptação–Projecto SIAM II. ISBN: 989-616-081-3.Google Scholar
  24. Stott, P., Christidis, N., Otto, F., Sun, Y., Vanderlinden, J. P., van Oldenborgh, G., et al. (2016). Attribution of extreme weather and climate-related events. Wiley Interdisciplinary Reviews: Climate Change, 7(1), 23–41.  https://doi.org/10.1002/wcc.380.Google Scholar
  25. Surový, P., Olbrich, A., Polle, A., Ribeiro, N. A., Sloboda, B., & Langenfeld-Heyser, R. (2009). A new method for measurement of annual growth rings in cork by means of autofluorescence. Trees, 23(6), 1237.  https://doi.org/10.1007/s00468-009-0363-7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Carla Leite
    • 1
  • Vanda Oliveira
    • 1
  • Alexandra Lauw
    • 1
  • Helena Pereira
    • 1
  1. 1.Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de LisboaLisbonPortugal

Personalised recommendations