Would Rainfed Agriculture Be the Right Option Under Climate Change Scenarios? A Case Study from Centro Region of Portugal

  • Albano Figueiredo
  • Carolina Alves
  • Joaquim Patriarca
  • Andreia Saavedra Cardoso
  • Paula Castro
  • João Loureiro
Chapter
Part of the Climate Change Management book series (CCM)

Abstract

Agriculture has changed significantly during the last 30 years in Portugal. One of the main changes is related to agricultural abandonment, mainly driven by demographic dynamics on areas that are marginal in terms of productivity. Such trend affects mainly rainfed agriculture, and was significant in the inland Norte and Centro regions of Portugal between 1990 and 2010. By contrast, irrigated areas dedicated to agriculture are increasing. Considering a predicted reduction on water availability under future climatic scenarios, determined by the decrease in the amount of annual precipitation, it is necessary to set strategies to adapt agriculture to a new climatic context, considering both production and consumption/dietary trends. To do so, and using as case study the Centro Region of Portugal, this work aims to evaluate how the suitable area for agriculture might change under future climatic scenarios (RCP 4.5 and 8.5 scenarios for the two time-windows of 2041–2070 and 2071–2100), and identify measures that contribute to adapt agriculture to a new context. Such assessment is based on a modelling approach that aims to evaluate suitability to agriculture, which is set from soil properties (soil type and texture), topographic parameters (such as slope and land morphology), and climatic conditions (water deficit). The expected reduction on water availability under future climatic scenarios, combined with recent trends on agriculture, namely the reduction of rainfed agriculture and the increase of irrigated agriculture areas, points to an unsustainable situation. This is of great concern, once there is a match between areas where water deficit is predicted to increase more and areas where irrigated area is expanding today. Thus, specific adaptation strategies/policies are needed to revert/cope with such trends, which must be spatially explicit and locally meaningful. The implementation of such approaches might be oriented by results from assessment of predicted changes in terms of suitable area for agriculture, but also consider economic and dietary aspects, an exercise that we try to validate based on the conditions of the Centro Region of Portugal.

Keywords

Rainfed agriculture Edaphoclimatic suitability model Water deficit Adaptation strategies Climate change 

References

  1. Almeida, A. C., Nunes, A., & Figueiredo, A. (2009). Mudanças no uso do solo no interior Centro e Norte de Portugal. Coimbra: Imprensa da Universidade de Coimbra.Google Scholar
  2. Almeida, A. C., Nunes, A., & Figueiredo, A. (2012). Mudanças recentes na paisagem portuguesa. In M. M. Passos, L. Cunha & R. Jacinto (Eds.), As Novas Geografias dos Países de Língua Portuguesa. Paisagens, Territórios e Políticas no Brasil e em Portugal (II) (pp. 113–135). São Paulo: Outras Expressões.Google Scholar
  3. Altieri, M., Nicholls, C., Henao, A., & Lana, M. (2015). Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development, 35(3), 869–890.  https://doi.org/10.1007/s13593-015-0285-2.CrossRefGoogle Scholar
  4. Altieri, M. A., & Nicholls, C. I. (2017). The adaptation and mitigation potential of traditional agriculture in a changing climate. Climatic Change, 140(1), 33–45.  https://doi.org/10.1007/s10584-013-0909-y.CrossRefGoogle Scholar
  5. Alves, C., Nunes, A., & Silva, J. (2016). Innovation towards more resilient territories: A case study from the Serra da Estrela, Portugal. In T. Noronha & H. Pinto (Eds.), Innovation for resilience (pp. 97–124). Universidade do Algarve.Google Scholar
  6. Alves, C. D., Figueiredo, A., Patriarca, J., Castro, P., & Loureiro, J. (2017). Agricultura. Plano de Adaptação às alterações climáticas da Comunidade Intermunicipal da Região de Coimbra (pp. 149–236). Coimbra: Universidade de Coimbra and CIM-RC.Google Scholar
  7. APA (Agência Portuguesa para o Ambiente). (2013). Estratégia de Adaptação da Agricultura e das Florestas às Alterações Climáticas. APA, Lisboa, Portugal.Google Scholar
  8. Beniston, M., Keller, F., Koffi, B., & Goyette, S. (2003). Estimates of snow accumulation and volume in the Swiss Alps under changing climate conditions. Theoretical and Applied Climatology, 76, 125–140.CrossRefGoogle Scholar
  9. Beniston, M., Rebetez, M., Giorgi, F., & Marinucci, M. R. (1994). An analysis of regional climate change in Switzerland. Theoretical and Applied Climatology, 49(3), 135–159.CrossRefGoogle Scholar
  10. Calzadilla, A., Rehdanz, K., Betts, R., Falloon, P., Wiltshire, A., & Tol, R. S. (2013). Climate change impacts on global agriculture. Climatic Change, 120(1–2), 357–374.  https://doi.org/10.1007/s10584-013-0822-4.CrossRefGoogle Scholar
  11. Campbell, B. M., Vermeulen, S. J., Aggarwal, P. K., Corner-Dolloff, C., Girvetz, E., Loboguerrero, A. M., et al. (2016). Reducing risks to food security from climate change. Global Food Security, 11, 34–43.  https://doi.org/10.1016/j.gfs.2016.06.002.CrossRefGoogle Scholar
  12. Chang, J., Ciais, P., Viovy, N., Vuichard, N., Herrero, M., Havlík, P., … Soussana, J. F. (2016). Effect of climate change, CO2 trends, nitrogen addition, and land cover and management intensity changes on the carbon balance of European grasslands. Global Change Biology, 22(1), 338–350.  https://doi.org/10.1111/gcb.13050.
  13. Ciscar, J. (Eds.). (2009). Climate change impacts in Europe. Final report of the PESETA research project. Luxemburg: Publications Office of the European Union.Google Scholar
  14. Cortez, N. (2007). Sub-sistema Solo. Estrutura Ecológica da Paisagem, conceitos e delimitação: escalas regional e municipal (pp. 52–57). Lisboa: ISApress.Google Scholar
  15. Cortez, N., Leitão, M., & Pena, S. (2013). Solo. In Estrutura Ecológica da Paisagem, conceitos e delimitação: escalas regional e municipal (pp. 83–104). Lisboa: ISApress. ISBN: 978-972-8669-53-9. Retrieved from http://epic-webgis-portugal.isa.ulisboa.pt/.
  16. Cunha, N., Magalhães, M. R., Abreu, M., & Abreu, M. C. (2013). Morfologia do Terreno. In Estrutura Ecológica Nacional. Uma proposta de delimitação e regulamentação (pp. 51–66). ISAPress: Lisboa. ISBN: 978-972-8669-53-9. Retrieved from http://epic-webgis-portugal.isa.ulisboa.pt/.
  17. Cunha, N. S., Magalhães, M. R., Domingos, T., Abreu, M. M., & Küpfer, C. (2017). The land morphology approach to flood risk mapping: An application to Portugal. Journal of Environmental Management, 193, 172–187.  https://doi.org/10.1016/j.jenvman.2017.01.077.CrossRefGoogle Scholar
  18. EEA (European Environment Agency). (2013). Adaptation in Europe. Addressing risks and opportunities from climate change in the context of socio-economic developments. Publications Office of the European Union, Luxembourg. EEA Report No 3/2013.Google Scholar
  19. EEA (European Environment Agency). (2017a). Climate change, impacts and vulnerability in Europe 2016. An indicator-based report. Publications Office of the European Union, Luxembourg. EEA Report No 1/2017.Google Scholar
  20. EEA (European Environment Agency). (2017b). Global and European temperature. Indicator assessment; data and maps. Available at https://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature-4/assessment.
  21. Eliasson, Å., (2007). Review of land evaluation methods for quantifying natural constraints to agriculture. The institute for environment and sustainability, Joint Research Centre, Ispra (Italy). Luxembourg: Office for Official Publications of the European Communities.  https/doi.org/10.2788/17545. Available online at: https://core.ac.uk/download/pdf/38609579.pdf.
  22. Engle, N. L., de Bremond, A., Malone, E. L., & Moss, R. H. (2014). Towards a resilience indicator framework for making climate-change adaptation decisions. Mitigation and Adaptation Strategies for Global Change, 19, 1295–1312.  https://doi.org/10.1007/s11027-013-9475-x.CrossRefGoogle Scholar
  23. Fernández-García, F. (1995). Manual de climatología aplicada: clima, medio ambiente y planificación. Madrid, España: Editorial Síntesis.Google Scholar
  24. FAO—Food and Agriculture Organization of the United Nations. (1976). A framework for land evaluation. Soils bulletin n.º 32. FAO, Rome, Italy.Google Scholar
  25. FAO—Food and Agriculture Organization of the United Nations. (1988). Directives: Evaluation des Terres pour l’Agriculture Pluviale. Bulletin Pédologique de la FAO 52. FAO, Rome, Italy.Google Scholar
  26. FAO—Food and Agriculture Organization of the United Nations. (1996). Rome declaration on world food security and world food summit plan of action. World Food Summit, November 13–17. FAO, Rome, Italy.Google Scholar
  27. FAO—Food and Agriculture Organization of the United Nations. (2012). Food agriculture and cities: Challenges of food and nutrition security, agriculture and ecosystem management in an urbanizing world. Rome, Italy: FAO.Google Scholar
  28. FAO—Food and Agriculture Organization of the United Nations. (2016). Climate change and food security: Risks and responses. Rome, Italy: FAO.Google Scholar
  29. FAO—Food and Agriculture Organization of the United Nations. (2017). The future Trends of food and challenges agriculture. Rome, Italy: FAO.Google Scholar
  30. Fellmann, T. (2012). The assessment of climate change-related vulnerability in the agricultural sector: Reviewing conceptual frameworks. In A. Meybeck, J. Lankoski, S. Redferm, N. Azzu, & V. Gitz (Eds.), Building resilience for adaptation to climate change in the agriculture sector (pp. 37–61). Proceedings of a Joint FAO/OECD Workshop, April 23–24, 2012. FAO, OECD, Roma.Google Scholar
  31. Galli, A., Iha, K., Halle, M., El Bilali, H., Grunewald, N., Eaton, D., et al. (2017). Mediterranean countries’ food consumption and sourcing patterns. An Ecological Footprint viewpoint. Science of the Total Environment, 578, 383–391.  https://doi.org/10.1016/j.scitotenv.2016.10.191.CrossRefGoogle Scholar
  32. Garnett, T. (2011). Where are the best opportunities for reducing greenhouse gas emissions in the food system? Food Policy, 36(S1), S23–S32.  https://doi.org/10.1016/j.foodpol.2010.10.010.CrossRefGoogle Scholar
  33. Garnett, T. (2014). Three perspectives on sustainable food security: Efficiency, demand restraint, food system transformation. What role for life cycle assessment? Journal of Cleaner Production, 73, 10–18.  https://doi.org/10.1016/j.jclepro.2013.07.045.CrossRefGoogle Scholar
  34. Garnett, T., Mathewson, S., Angelides, P., & Borthwick, F. (2015). Policies and actions to shift eating patterns: What works?. Oxford, UK: Food Climate Research Network; Chatham House, Royal Institute of International Affairs.Google Scholar
  35. Graça, P., de Sousa, S. F., Correia, A., Salvador, C., Filipe, J., Carriço, J., et al. (2016). Portugal. Alimentação Saudável em Números – 2015. Lisboa, Portugal: Direção-Geral da Saúde. Retrieved from https://www.dgs.pt/em-destaque/portugal-alimentacao-saudavel-em-numeros-2015.aspx.
  36. Gustafson, D., Gutman, A., Leet, W., Drewnowski, A., Fanzo, J., & Ingram, J. (2016). Seven food system metrics of sustainable nutrition security. Sustainability, 8(3), 196.  https://doi.org/10.3390/su8030196.CrossRefGoogle Scholar
  37. Hays, J. D., Imbrie, J., & Shackleton, N. J. (1976). Variations in the Earth’s orbit: Pacemaker of the ice ages. Science, 194(4270), 1121–1132.CrossRefGoogle Scholar
  38. Instituto Nacional de Estatística—INE. (2013). População residente em lugares censitários (N.º) por Local de residência. Recenseamento da População e Habitação – 2011. Instituto Nacional de Estatística, Lisboa, Portugal.Google Scholar
  39. Instituto Nacional de Estatística—INE. (2017a). Capitação edível diária de produtos alimentares disponível para abastecimento (g/ hab.) por Tipo de produto alimentar. Balança Aliment. Port. – 2012–2016. Instituto Nacional de Estatística, Lisboa, Portugal.Google Scholar
  40. Instituto Nacional de Estatística—INE. (2017b). Produção Agrícola: Animal e vegetal – 2016. Vários indicadores. Instituto Nacional de Estatística, Lisboa, Portugal.Google Scholar
  41. IPCC (Intergovernmental Panel on Climate Change). (2007). Climate change 2007: Synthesis report. Summary for policymakers. Cambridge, UK and New York, NY, : Cambridge University Press.CrossRefGoogle Scholar
  42. IPCC (Intergovernmental Panel on Climate Change). (2014). Climate change 2014. Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.). Cambridge, UK: Cambridge University Press.Google Scholar
  43. Kohm, K. A., & Franklin, J. F. (1997). Creating a forestry for the 21st century: The science of ecosystem management. Washington, DC: Island Press.Google Scholar
  44. La Jeunesse, I., Cirelli, C., Aubin, D., Larrue, C., Sellami, H., Afifi, S., … Dettori, M. (2016). Is climate change a threat for water uses in the Mediterranean region? Results from a survey at local scale. Science of the Total Environment, 543, 981–996.  https://doi.org/10.1016/j.scitotenv.2015.04.062.
  45. Liang, X. Z., Wu, Y., Chambers, R. G., Schmoldt, D. L., Gao, W., Liu, C., … Kennedy, J. A. (2017). Determining climate effects on US total agricultural productivity. Proceedings of the National Academy of Sciences, 114(12), E2285–E2292.  https://doi.org/10.1073/pnas.1615922114.
  46. Lloyd, A., & Fastie, C. (2003). Recent changes in treeline forest distribution and structure in interior Alaska. Écoscience, 10(1), 176–185.CrossRefGoogle Scholar
  47. Magalhães, M. R. (2001). A Arquitectura Paisagista. Morfologia e complexidade. Lisboa: Editorial Estampa. ISBN 972-33-1686-2.Google Scholar
  48. Magalhães, M. R. (Coord.). (2007). Estrutura ecológica da paisagem. Conceitos e delimitação – escalas regional e municipal. Centro de Estudos de Arquitectura Paisagista “Prof. Caldeira Cabral”. Lisboa: ISAPress, Instituto Superior de Agronomia.Google Scholar
  49. Malczewski, J., & Rinner, C. (2015). Multicriteria decision analysis in geographic information science. Berlin: Springer. ISBN 978–3-540-74756-7.Google Scholar
  50. Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K., Rutherford, S., et al. (2008). Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences, 105(36), 13252–13257.CrossRefGoogle Scholar
  51. Maslin, M. (2016). In retrospect: Forty years of linking orbits to ice ages. Nature, 540(7632), 208–210.CrossRefGoogle Scholar
  52. Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., et al. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12(10), 1969–1976.CrossRefGoogle Scholar
  53. Milano, M. (2012). Changements globaux en Méditerranée: impacts sur le stress hydrique et la capacité à satisfaire les demandes en eau. PhD thesis. Université Montpellier 2, France.Google Scholar
  54. Miranda, P. M. A., Valente, M. A., Tomé, A. R., Trigo, R., Coelho, M. F. E. S., Aguiar, A., et al. (2006). O clima de Portugal nos séculos XX e XXI. In F. D. Santos & P. Miranda (Eds.), Alterações Climáticas em Portugal. Cenários, Impactos e Medidas de Adaptação. Projecto SIAM II (pp. pp. 45–113). Lisboa: Gradiva.Google Scholar
  55. Munier, N. (2011). A strategy for using multicriteria analysis in decision-making. London: Sringer.CrossRefGoogle Scholar
  56. Niles, M., Esquivel, J., Ahuja, R., & Mango, N. (2017). Climate change and food systems: Assessing impacts and opportunities. Washington, DC.: Meridian Institute.Google Scholar
  57. Noble, I. R., Huq, S., Anokhin, Y. A., Carmin, J., Goudou, D., Lansigan, F. P., et al. (2014). Adaptation needs and options. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 833–868). Cambridge, UK and New York, NY: Cambridge University Press.Google Scholar
  58. Nunes, A. (2008). Abandono do espaço agrícola na “Beira Transmontana”. Iberografias 13. Ed. Campo das Letras SA, Porto, Portugal.Google Scholar
  59. Oerlemans, J. (2005). Extracting a climate signal from 169 glacier records. Science, 308(5722), 675–677.CrossRefGoogle Scholar
  60. Olesen, J. E. (2016). Socio-economic impacts—agricultural systems. In M. Quante & F. Colijn (Eds.), North sea region climate change assessment (pp. 397–407). Cham: Springer International Publishing.Google Scholar
  61. Orshoven, J., Terres, J.-M., & Tóth, T. (2012). Updated common bio-physical criteria to define natural constraints for agriculture in Europe. Definition and scientific justification for the common biophysical criteria. Luxembourg: Publications Office of the European Union.Google Scholar
  62. Paci-Green, R., & Berardi, G. (2015). Do global food systems have an Achilles heel? The potential for regional food systems to support resilience in regional disasters. Journal of Environmental Studies and Sciences, 5, 685–698. http://dx.doi.org/10.1007/s13412-873015-0342-9.
  63. Paloviita, A., & Järvelä, M. (Eds.). (2016). Climate change adaptation and food supply chain management. New York, NY: Routledge. ISBN 9781315757728.Google Scholar
  64. Paloviita, A., Kortetmäki, T., Puupponen, A., & Silvasti, T. (2016). Vulnerability matrix of the food system: Operationalizing vulnerability and addressing food security. Journal of Cleaner Production, 135, 1242–1255.  https://doi.org/10.1016/j.jclepro.2016.07.018.CrossRefGoogle Scholar
  65. Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics, 52, 273–288.CrossRefGoogle Scholar
  66. Pinho, I., Franchini, B., & Rodrigues, S. (2016). Guia alimentar mediterrânico. Relatório justificativo do seu desenvolvimento. Porto, Portugal: Direção-Geral da Saúde.Google Scholar
  67. Pinto, P., Braga, R., & Brandão, A. (2006). Agricultura. In F. Santos & P. Miranda (Eds.), Alterações climáticas em Portugal: cenários, impactos e medidas de adaptação, Projeto SIAM II (pp. 213–231 ). Lisboa: Gradiva.Google Scholar
  68. Ramaswamy, V., Schwarzkopf, M. D., Randel, W. J., Santer, B. D., Soden, B. J., & Stenchikov, G. L. (2006). Anthropogenic and natural influences in the evolution of lower stratospheric cooling. Science, 311(5764), 1138–1141.CrossRefGoogle Scholar
  69. Ruhf, K. Z. (2015). Regionalism: A New England recipe for a resilient food system. Journal of Environmental Studies and Sciences, 5, 650–868, 660.  https://doi.org/10.1007/s13412-015-0324-y.CrossRefGoogle Scholar
  70. Saavedra Cardoso, A., Domingos, T., Magalhães, M. R., de Melo-Abreu, J., & Palma, J. (2017b). Mapping the Lisbon potential foodshed in Ribatejo e Oeste: A suitability and yield model for assessing the potential for localized food production. Sustainability, 9(11), 2003.  https://doi.org/10.3390/su9112003.
  71. Saavedra Cardoso, A., Ramos, F., de Melo-Abreu, J., Loureiro, J., & Leston, S. (2017a). Alimentação. Plano de Adaptação às alterações climáticas da Comunidade Intermunicipal da Região de Coimbra (pp. 237–423). Coimbra: Universidade de Coimbra and CIM-RC.Google Scholar
  72. Santer, B. D., Taylor, K. E., Wigley, T. M. L., & Johns, T. C. (1996). A search for human influences on the thermal structure of the atmosphere. Nature, 382(6586), 39.CrossRefGoogle Scholar
  73. Santer, B. D., Wehner, M. F., Wigley, T. M. L., Sausen, R., Meehl, G. A., Taylor, K. E., … Brüggemann, W. (2003). Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301(5632), 479–483.Google Scholar
  74. Saaty, T. (1988). The analytic hierarchy process: Planning, priority setting, resource allocation. New York: Mcgraw-Hill. ISBN 0070543712.Google Scholar
  75. Schleip, C., Rutishauser, T., Luterbacher, J., & Menzel, A. (2008). Time series modeling and central European temperature impact assessment of phenological records over the last 250 years. Journal Geophysical Research, 113(G4), G04026.CrossRefGoogle Scholar
  76. Skuras, D., & Psaltopoulos, D. (2012). A broad overview of the main problems derived from climate change that will affect agricultural production in the Mediterranean area. In A. Meybeck, J. Lankoski, S. Redferm, N. Azzu, & V. Gitz (Eds.), Building resilience for adaptation to climate change in the agriculture sector (pp. 217–260). Proceedings of a Joint FAO/OECD Workshop. April 23–24, 2012. FAO, OECD, Roma.Google Scholar
  77. Smith, P., & Olesen, J. E. (2010). Synergies between the mitigation of, and adaptation to, climate change in agriculture. The Journal of Agricultural Science, 148(5):543–552.Google Scholar
  78. Sorg, A., Bolch, T., Stoffel, M., Solomina, O., & Beniston, M. (2012). Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Climate Change, 2, 725–731.Google Scholar
  79. Thornthwaite, C. W., & Mather, J. R. (1957). Instructions and tables for computing potential evapotranspiration and the water balance (Vol. 10, No. 3, pp. 185–311). Centerton, N.J.: Laboratory of Climatology, Publications in Climatology.Google Scholar
  80. Torriani, D. S., Calanca, P., Schmid, S., Beniston, M., & Fuhrer, J. (2007). Potential effects of changes in mean climate and climate variability on the yield of winter and spring crops in Switzerland. Climate Research, 34(1), 59–69.CrossRefGoogle Scholar
  81. Tukker, A., Huppes, G., Guinée, J., Heijungs, R., Koning, A., Van Oers, L., et al. (2006). Environmental impact of products. Analysis of the life cycle environmental impacts related to the final consumption of the EU-25 European Commission. Seville: European Commission Joint Research Centre Institute for Prospective Technological Studies.Google Scholar
  82. United Nations Educational, Scientific and Cultural Organization (UNESCO). (2009). Integrated water resources management guidelines at river basin level. Retrieved from: http://www.unesco.org/water/.
  83. Vanham, D., del Pozo, S., Pekcan, A. G., Keinan-Boker, L., Trichopoulou, A., & Gawlik, B. M. (2017). Water consumption related to different diets in Mediterranean cities. Science of the Total Environment, 573, 96–105.CrossRefGoogle Scholar
  84. Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. I. (2012). Climate change and food systems. Annual Review of Environment and Resources, 37(2012), 195–222.  https://doi.org/10.1146/annurev-environ-020411-130608.CrossRefGoogle Scholar
  85. Von Witzke, H., & Noleppa, S. (2010). EU agricultural production and trade: Can more efficiency prevent increasing “land grabbing” outside of Europe? Research Report, Humboldt University, Berlin.Google Scholar
  86. Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., et al. (2002). Ecological responses to recent climate change. Nature, 416(6879), 389–395.CrossRefGoogle Scholar
  87. WEF (World Economic Forum). (2016). The Global Risks Report 2016 (11th ed.). Geneva.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Albano Figueiredo
    • 1
    • 2
  • Carolina Alves
    • 2
  • Joaquim Patriarca
    • 2
    • 3
  • Andreia Saavedra Cardoso
    • 4
  • Paula Castro
    • 5
  • João Loureiro
    • 5
  1. 1.Department of Geography and TourismUniversity of CoimbraCoimbraPortugal
  2. 2.Centre for Studies in Geography and Spatial Planning (CEGOT)University of CoimbraCoimbraPortugal
  3. 3.Institute for Systems Engineering and Computers CoimbraUniversity of CoimbraCoimbraPortugal
  4. 4.Research Unit in Materials, Energy and Environment for Sustainability, Agrarian School of Ponte de Lima (ESA)Viana do Castelo Polytechnic Institute (IPVC)Viana do CasteloPortugal
  5. 5.CFE-Centre for Functional Ecology - Science for People & the Planet, Department of Life SciencesUniversity of CoimbraCoimbraPortugal

Personalised recommendations