Advertisement

Depolarized Dynamic Light Scattering and Dielectric Spectroscopy: Two Perspectives on Molecular Reorientation in Supercooled Liquids

  • J. Gabriel
  • F. Pabst
  • A. Helbling
  • T. Böhmer
  • T. Blochowicz
Chapter
Part of the Advances in Dielectrics book series (ADVDIELECT)

Abstract

Broadband dielectric spectroscopy (BDS) can be considered the standard and most widespread method to experimentally access molecular reorientation in supercooled liquids, as it covers a range of time constants from sub picoseconds corresponding to the highly fluid liquid to several thousand seconds below the glass transition temperature. In a similar fashion, depolarized dynamic light scattering (DLS) is able to probe molecular reorientation. A comparable range of time scales is covered by combining Tandem Fabry Perot Interferometry (TFPI) and Photon Correlation Spectroscopy (PCS) with recent multispeckle techniques allowing to access even the non-ergodic regime below \(T_g\). Thus, DLS represents an alternative route to cover the full range of glassy dynamics. Moreover, due to the fact that both methods couple to different molecular properties, extra information in particular on the motional mechanism behind a certain dynamic process can be obtained by comparing experimental data from both techniques. In the present work we explore this approach for several examples, including ionic liquids and monohydroxy alcohols, and discuss the implications for different relaxation processes. For instance in the case of supercooled ionic liquids, i.e., molten salts, which are liquid at room temperature, the combination of both techniques allows to unambiguously disentangle the contribution of molecular reorientation from other polarization features that often mask reorientation in the dielectric spectra, and a detailed analysis reveals indications for a crossover in the motional mechanism involved in the \(\alpha \)-relaxation. In monohydroxy alcohols we discuss the appearance of the Johari-Goldstein \(\beta \)-process in both techniques and what the observations imply for the underlying motional mechansim. Furthermore, we consider the Debye relaxation, which is frequently observed in the dielectric spectra of monoalcohols and is usually ascribed to transient supramolecular structures. Here, such a comparison of data reveals molecular details about the conditions under which the supramolecular structures are formed.

Notes

Acknowledgements

We cordially thank Ernst Rößler, Bayreuth, for providing the data on 1-propanol from Refs. [54, 55] and for making the dielectric time domain setup and the Tandem Fabry-Perot interferometer available to us. We are grateful to Catalin Gainaru, Dortmund, for stimulating discussions about alcohols and ionic liquids. Financial support by the Deutsche Forschungsgemeinschaft under Grant No. BL 923/1 and within FOR 1583 under Grant No. BL 1192/1 is gratefully acknowledged.

References

  1. 1.
    Arrese-Igor S, Alegria A, Colmenero J (2017) On the non-exponentiality of the dielectric Debye-like relaxation of monoalcohols. J Chem Phys 146(11):114,502Google Scholar
  2. 2.
    Barshilia HC, Li G, Shen GQ, Cummins HZ (1999) Depolarized light scattering spectroscopy of Ca\(_{0.4}\)K\(_{0.6}\)(NO\(_3\))\(_{1.4}\): A reexamination of the "knee". Phys Rev E 59:5625CrossRefGoogle Scholar
  3. 3.
    Bartsch E, Frenz V, Kirsch S, Schärtl W, Sillescu H (1997) Multi-speckle autocorrelation spectroscopy - a new strategy to monitor ultraslow dynamics in dense and nonergodic media. Prog Coll Polym Sci 104:40–48Google Scholar
  4. 4.
    Battaglia MR, Cox TI, Madden PA (1979) The orientational correlation parameter for liquid CS\(_2\), C\(_6\)H\(_6\) and C\(_6\)F\(_6\). Mol Phys 37:1413–1427CrossRefGoogle Scholar
  5. 5.
    Bee M (1988) Quasielastic neutron scattering. Adam Hilger, BristolGoogle Scholar
  6. 6.
    Berne BJ, Pecora R (1976) Dynamic light scattering. Wiley, New YorkGoogle Scholar
  7. 7.
    Blochowicz T, Kudlik A, Benkhof S, Senker J, Rössler E, Hinze G (1999) The spectral density in simple organic glassformers: Comparison of dielectric and spin-lattice relaxation. J Chem Phys 110(24):12,011–12,022CrossRefGoogle Scholar
  8. 8.
    Blochowicz T, Tschirwitz C, Benkhof S, Rössler EA (2003) Susceptibility functions for slow relaxation processes in supercooled liquids and the search for universal relaxation patterns. J Chem Phys 118(16):7544–7555CrossRefGoogle Scholar
  9. 9.
    Blochowicz T, Brodin A, Rössler EA (2006) Evolution of the dynamic susceptibility in supercooled liquids and glasses. Adv Chem Phys 133:127–256Google Scholar
  10. 10.
    Blochowicz T, Gouirand E, Schramm S, Stühn B (2013) Density and confinement effects of glass forming m-toluidine in nanoporous Vycor investigated by depolarized dynamic light scattering. J Chem Phys 138(114):501Google Scholar
  11. 11.
    Böttcher CJF, Bordewijk P (1978) Theory of electric polarization II: dielectrics in time-dependent fields. Elsevier, Amsterdam, London, New YorkGoogle Scholar
  12. 12.
    Bremer LGB, Deriemaeker L, Finsy R, Gelade E, Joosten JGH (1993) Fiber optic dynamic light scattering, neither homodyne nor heterodyne. Langmuir 9(8):2008–2014CrossRefGoogle Scholar
  13. 13.
    Brodin A, Rössler EA (2005) Depolarized light scattering study of glycerol. Eur Phys J B 44(1):3–14CrossRefGoogle Scholar
  14. 14.
    Brodin A, Bergman R, Mattsson J, Rössler EA (2003a) Light scattering and dielectric manifestations of secondary relaxations in molecular glassformers. Eur Phys J B 36:349–357Google Scholar
  15. 15.
    Brodin A, Bergman R, Mattsson J, Rössler EA (2003b) Light scattering and dielectric manifestations of secondary relaxations in molecular glassformers. Eur Phys J B-Condensed Matter Complex Syst 36(3):349–357Google Scholar
  16. 16.
    Böhmer R, Gainaru C, Richert R (2014) Structure and dynamics of monohydroxy alcohols - milestones towards their microscopic understanding, 100 years after Debye. Phys Rep 545:125–195CrossRefGoogle Scholar
  17. 17.
    Callen HB, Welton TA (1951) Irreversibility and generalized noise. Phys Rev 83(1):34–40CrossRefGoogle Scholar
  18. 18.
    Caminiti R, Gontrani L (2014) The structure of ionic liquids, vol 193. SpringerGoogle Scholar
  19. 19.
    Cole RH (1965) Correlation function theory of dielectric relaxation. J Chem Phys 42:637CrossRefGoogle Scholar
  20. 20.
    Cummins HZ, Li G, Du W, Pick RM, Dreyfus C (1996) Origin of depolarized light scattering in supercooled liquids: orientational fluctuation versus induced scattering mechanisms. Phys Rev E 53:896–904CrossRefGoogle Scholar
  21. 21.
    Cummins HZ, Li G, Hwang YH, Shen GQ, Du WM, Hernandez J, Tao NJ (1997) Dynamics of supercooled liquids and glasses: comparison of experiments with theoretical predictions. Z Phys B Condens Mat 103:501–519CrossRefGoogle Scholar
  22. 22.
    Daguenet C, Dyson PJ, Krossing I, Oleinikova A, Slattery J, Wakai C, Weingärtner H (2006) Dielectric response of imidazolium-based room-temperature ionic liquids. J Phys Chem B 110(25):12,682–12,688CrossRefGoogle Scholar
  23. 23.
    Dannhauser W (1968) Dielectric study of intermolecular association in isomeric octyl alcohols. J Chem Phys 48:1911CrossRefGoogle Scholar
  24. 24.
    Debye P (1929) Polar Mol. Chemical Catalog Co., New YorkGoogle Scholar
  25. 25.
    Dyre JC (1988) The random free-energy barrier model for ac conduction in disordered solids. J Appl Phys 64(5):2456–2468CrossRefGoogle Scholar
  26. 26.
    Fatuzzo E, Mason PR (1967) A theory of dielectric relaxation in polar liquids. Proc Phys Soc London 90:741CrossRefGoogle Scholar
  27. 27.
    Fraser KJ, Izgorodina EI, Forsyth M, Scott JL, MacFarlane DR (2007) Liquids intermediate between “molecular” and “ionic” liquids: Liquid ion pairs? Chem Commun 37:3817–3819CrossRefGoogle Scholar
  28. 28.
    Fröhlich H (1958) Theory of dielectrics. Clarendon Press, OxfordGoogle Scholar
  29. 29.
    Fytas G (1989) Relaxation processes in amorphous poly(cyclohexyl methacrylate) in the rubbery and glassy state studied by photon correlation spectroscopy. Macromolecules 22:211–215CrossRefGoogle Scholar
  30. 30.
    Gabriel J, Blochowicz T, Stühn B (2015) Compressed exponential decays in correlation experiments: the influence of temperature gradients and convection. J Chem Phys 142(10):104,902CrossRefGoogle Scholar
  31. 31.
    Gabriel J, Pabst F, Blochowicz T (2017) Debye-process and \(\beta \)-relaxation in 1-propanol probed by dielectric spectroscopy and dynamic light scattering. J Phys Chem B 121:8847–8853CrossRefGoogle Scholar
  32. 32.
    Gabriel J, Pabst F, Helbling A, Böhmer T, Blochowicz T (2018) On the nature of the Debye-process in monohydroxy alcohols: 5-methyl-2-hexanol investigated by depolarized light scattering and dielectric spectroscopy. arXiv:1805.04664
  33. 33.
    Gainaru C, Meier R, Schildmann S, Lederle C, Hiller W, Rössler EA, Böhmer R (2010) Nuclear-magnetic-resonance measurements reveal the origin of the Debye process in monohydroxy alcohols. Phys Rev Lett 105(258):303Google Scholar
  34. 34.
    Gainaru C, Figuli R, Hecksher T, Jakobsen B, Dyre JC, Wilhelm M, Böhmer R (2014) Shear-modulus investigations of monohydroxy alcohols: evidence for a short-chain-polymer rheological response. Phys Rev Lett 112(098):301Google Scholar
  35. 35.
    Gainaru C, Stacy EW, Bocharova V, Gobet M, Holt AP, Saito T, Greenbaum S, Sokolov AP (2016) Mechanism of conductivity relaxation in liquid and polymeric electrolytes: direct link between conductivity and diffusivity. J Phys Chem B 120(42):11,074–11,083CrossRefGoogle Scholar
  36. 36.
    Gapinski J, Steffen W, Patkowski A, Sokolov AP, Kisliuk A, Buchenau U, Russina M, Mezei F, Schober H (1999) Spectrum of fast dynamics in glass forming liquids: Does the “knee” exist? J Chem Phys 110:2312CrossRefGoogle Scholar
  37. 37.
    Glarum SH (1960) Dielectric relaxation of polar liquids. J Chem Phys 33:1371CrossRefGoogle Scholar
  38. 38.
    Goldstein M (1969) Viscous liquids and the glass transition: a potential energy barrier picture. J Chem Phys 51(9):3728–3739CrossRefGoogle Scholar
  39. 39.
    Griffin P, Agapov AL, Kisliuk A, Sun XG, Dai S, Novikov VN, Sokolov AP (2011) Decoupling charge transport from the structural dynamics in room temperature ionic liquids. J Chem Phys 135(11):114,509CrossRefGoogle Scholar
  40. 40.
    Griffin PJ, Agapov AL, Sokolov AP (2012) Translation-rotation decoupling and nonexponentiality in room temperature ionic liquids. Phys Rev E 86(2):21,508CrossRefGoogle Scholar
  41. 41.
    Griffin PJ, Holt AP, Wang Y, Novikov VN, Sangoro JR, Kremer F, Sokolov AP (2014) Interplay between hydrophobic aggregation and charge transport in the ionic liquid methyltrioctylammonium bis (trifluoromethylsulfonyl) imide. J Phys Chem B 118(3):783–790CrossRefPubMedGoogle Scholar
  42. 42.
    Hansen C, Stickel F, Berger T, Richert R, Fischer EW (1997) Dynamics of glass-forming liquids. iii. comparing the dielectric alpha- and beta-relaxation of 1-propanol and o-terphenyl. J Chem Phys 107(4):1086–1093CrossRefGoogle Scholar
  43. 43.
    Hansen JP, McDonald IR (1976) Theory of simple liquids. Academic Press, London, New YorkGoogle Scholar
  44. 44.
    Hansen JS, Kisliuk A, Sokolov AP, Gainaru C (2016) Identification of structural relaxation in the dielectric response of water. Phys Rev Lett 116(23):237601Google Scholar
  45. 45.
    Hensel-Bielowka S, Wojnarowska Z, Dzida M, Zorebski E, Zorebski M, Geppert-Rybczyska M, Peppel T, Grzybowska K, Wang Y, Sokolov AP, Paluch M (2015) Heterogeneous nature of relaxation dynamics of room-temperature ionic liquids (EMIm)\(_2\)[Co(NCS)\(_4\)] and (BMIm)\(_2\)[Co(NCS)\(_4\)]. J Phys Chem C 119(35):20,363–20,368CrossRefGoogle Scholar
  46. 46.
    www.chemaxon.com, copyright (2017) Marvinsketch 17.8.0
  47. 47.
    Johari G (2002) Localized molecular motions of \(\beta \)-relaxation and its energy landscape. J Non-Cryst Solids 307–310:317–325CrossRefGoogle Scholar
  48. 48.
    Johari GP (1976) Glass transition and secondary relaxations in molecular liquids and crystals. Annals of the N Y Acad Sci 279:117–140CrossRefGoogle Scholar
  49. 49.
    Johari GP, Dannhauser W (1968) Dielectric study of intermolecular association in sterically hindered octanol isomers. J Phys Chem 72(9):3273–3276CrossRefGoogle Scholar
  50. 50.
    Johari GP, Dannhauser W (1972) Effect of pressure on dielectric polarization of 1-phenyl-1-propanol. High Temp-High Press 4(2):199–206Google Scholar
  51. 51.
    Johari GP, Goldstein M (1970) Viscous liquids and the glass transition II: secondary relaxations in glasses of rigid molecules. J Chem Phys 53(6):2372–2388CrossRefGoogle Scholar
  52. 52.
    Johari GP, Kalinovskaya OE, Vij JK (2001) Effects of induced steric hindrance on the dielectric behavior and h bonding in the supercooled liquid and vitreous alcohol. J Chem Phys 114(10):4634–4642CrossRefGoogle Scholar
  53. 53.
    Kirkwood JG (1939) The dielectric polarization of polar liquids. J Chem Phys 7:911CrossRefGoogle Scholar
  54. 54.
    Kudlik A, Tschirwitz C, Benkhof S, Blochowicz T, Rössler E (1997) Slow secondary relaxation processes in supercooled liquids. Europhys Lett 40(6):649–654CrossRefGoogle Scholar
  55. 55.
    Kudlik A, Benkhof S, Blochowicz T, Tschirwitz C, Rössler E (1999) The dielectric response of simple organic glass formers. J Mol Struct 479:201–218CrossRefGoogle Scholar
  56. 56.
    Köhler M, Lunkenheimer P, Goncharov Y, Wehn R, Loidl A (2010) Glassy dynamics in mono-, di- and tri-propylene glycol: from the \(\alpha \)- to the fast \(\beta \)-relaxation. J Non-Cryst Solids 356:529–534CrossRefGoogle Scholar
  57. 57.
    Lebon MJ, Dreyfus C, Guissani Y, Pick RM, Cummins HZ (1997) Light scattering and dielectric susceptibility spectra of glassforming liquids. Z Phys B 103(3–4):433–439CrossRefGoogle Scholar
  58. 58.
    Lindsay SM, Anderson MW, Sandercock JR (1981) Construction and alignment of a high performance multipass vernier tandem fabry-perot interferometer. Rev Sci Instruments 52:1478CrossRefGoogle Scholar
  59. 59.
    Lunkenheimer P, Schneider U, Brand R, Loidl A (2000) Glassy dynamics. Contemporary Phys 41(1):15–36CrossRefGoogle Scholar
  60. 60.
    Madden P, Kivelson D (1984) A consistent molecular treatment of dielectric phenomena. Adv Chem Phys 56:467Google Scholar
  61. 61.
    Malo de Molina P, Alvarez F, Frick B, Wildes A, Arbe A, Colmenero J (2017) Investigation of the dynamics of aqueous proline solutions using neutron scattering and molecular dynamics simulations. Phys Chem Chem Phys 19(27):739Google Scholar
  62. 62.
    Mopsik FI (1984) Precision time-domain dielectric spectrometer. Rev Sci Instrum 55:79CrossRefGoogle Scholar
  63. 63.
    Pabst F, Gabriel J, Weigl P, Blochowicz T (2017) Molecular dynamics of supercooled ionic liquids studied by light scattering and dielectric spectroscopy. Chem Phys 494:103–110CrossRefGoogle Scholar
  64. 64.
    Pardo LC, Lunkenheimer P, Loidl A (2007) Dielectric spectroscopy in benzophenone: the \(\beta \)-relaxation and its relation to the mode-coupling Cole-Cole peak. Phys Rev E 76(030):502(R)Google Scholar
  65. 65.
    Patkowski A, Steffen W, Nilgens H, Fischer EW, Pecora R (1997) Depolarized dynamic light scattering from three low molecular weight glass forming liquids: a test of the scattering mechanism. J Chem Phys 106:8401CrossRefGoogle Scholar
  66. 66.
    Pecora R (ed) (1985) Dynamic light scattering - applications of photon correlation spectroscopy. Plenum, New YorkGoogle Scholar
  67. 67.
    Petzold N, Rössler EA (2010) Light scattering study on the glass former o-terphenyl. J Chem Phys 133(124):512Google Scholar
  68. 68.
    Petzold N, Schmidtke B, Kahlau R, Bock D, Meier R, Micko B, Kruk D, Rössler EA (2013) Evolution of the dynamic susceptibility in molecular glass formers: results from light scattering, dielectric spectroscopy, and NMR. J Chem Phys 138:12A510CrossRefPubMedGoogle Scholar
  69. 69.
    Pott T, Méléard P (2009) New insight into the nanostructure of ionic liquids: a small angle X-ray scattering (SAXS) study on liquid tri-alkyl-methyl-ammonium bis (trifluoromethanesulfonyl) amides and their mixtures. Phys Chem Chem Phys 11(26):5469–5475CrossRefPubMedGoogle Scholar
  70. 70.
    Power G, Johari GP, Vij JK (2003) Relaxation strength of localized motions in d-sorbitol and mimicry of glass-softening thermodynamics. J Chem Phys 119(1):435–442CrossRefGoogle Scholar
  71. 71.
    Power G, Vij JK, Johari GP (2006) Orientation polarization from faster motions in the ultraviscous and glassy diethyl phthalate and its entropy. J Chem Phys 124(4):044,513Google Scholar
  72. 72.
    Rivera A, Blochowicz T, Gainaru C, Rössler EA (2004) Spectral response from modulus time domain data of disordered materials. J Appl Phys 96(10):5607–5612CrossRefGoogle Scholar
  73. 73.
    Rivera A, Brodin A, Pugachev A, Rössler EA (2007) Orientational and translational dynamics in room temperature ionic liquids. J Chem Phys 126(11):114,503Google Scholar
  74. 74.
    Samet M, Levchenko V, Boiteux G, Seytre G, Kallel A, Serghei A (2015) Electrode polarization versus Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: characteristic frequencies and scaling laws. J Chem Phys 142(194):703Google Scholar
  75. 75.
    Sangoro J, Iacob C, Serghei A, Friedrich C, Kremer F (2009) Universal scaling of charge transport in glass-forming ionic liquids. Phys Chem Chem Phys 11(6):913–916CrossRefPubMedGoogle Scholar
  76. 76.
    Sangoro JR, Kremer F (2011) Charge transport and glassy dynamics in ionic liquids. Acc Chem Res 45(4):525–532CrossRefPubMedGoogle Scholar
  77. 77.
    Sangoro JR, Serghei A, Naumov S, Galvosas P, Kärger J, Wespe C, Bordusa F, Kremer F (2008) Charge transport and mass transport in imidazolium-based ionic liquids. Phys Rev E 77(5):51,202CrossRefGoogle Scholar
  78. 78.
    Sangoro JR, Iacob C, Serghei A, Friedrich C, Kremer F (2009) Universal scaling of charge transport in glass-forming ionic liquids. Phys Chem Chem Phys 11(6):913–916CrossRefPubMedGoogle Scholar
  79. 79.
    Sangoro JR, Iacob C, Naumov S, Valiullin R, Rexhausen H, Hunger J, Buchner R, Strehmel V, Kärger J, Kremer F (2011) Diffusion in ionic liquids: the interplay between molecular structure and dynamics. Soft Matter 7(5):1678–1681CrossRefGoogle Scholar
  80. 80.
    Sato T, Masuda G, Takagi K (2004) Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim Acta 49(21):3603–3611CrossRefGoogle Scholar
  81. 81.
    Schmidtke B, Petzold N, Kahlau R, Rössler EA (2013) Reorientational dynamics in molecular liquids as revealed by dynamic light scattering: from boiling point to glass transition temperature. J Chem Phys 139(084):504Google Scholar
  82. 82.
    Schröder C, Rudas T, Steinhauser O (2006) Simulation studies of ionic liquids: orientational correlations and static dielectric properties. J Chem Phys 125(24):244,506CrossRefGoogle Scholar
  83. 83.
    Schröder C, Hunger J, Stoppa A, Buchner R, Steinhauser O (2008) On the collective network of ionic liquid/water mixtures. ii. decomposition and interpretation of dielectric spectra. J Chem Phys 129(184):501Google Scholar
  84. 84.
    Serghei A, Tress M, Sangoro JR, Kremer F (2009) Electrode polarization and charge transport at solid interfaces. Phys Rev B 80(184):301Google Scholar
  85. 85.
    Siegert AJF (1943) On the fluctuations in signals returned by many independently moving scatterers. MIT Rad Lab Rep 465:1–14Google Scholar
  86. 86.
    Sillren P, Bielecki J, Mattsson J, Borjesson L, Matic A (2012) A statistical model of hydrogen bond networks in liquid alcohols. J Chem Phys 136(9):094514Google Scholar
  87. 87.
    Sillren P, Swenson J, Mattsson J, Bowron D, Matic A (2013) The temperature dependent structure of liquid 1-propanol as studied by neutron diffraction and EPSR simulations. J Chem Phys 138(21):214501Google Scholar
  88. 88.
    Singh LP, Richert R (2012) Watching hydrogen-bonded structures in an alcohol convert from rings to chains. Phys Rev Lett 109(16):167802Google Scholar
  89. 89.
    Song D, Chen J (2014) Density and viscosity data for mixtures of ionic liquids with a common anion. J Chem Eng Data 59(2):257–262CrossRefGoogle Scholar
  90. 90.
    Surovtsev NV, Wiedersich JAH, Novikov VN, Rössler E, Sokolov AP (1998) Light-scattering spectra of fast relaxation in glasses. Phys Rev B 58(14):888Google Scholar
  91. 91.
    Takekiyo T, Imai Y, Abe H, Yoshimura Y (2012) Conformational analysis of quaternary ammonium-type ionic liquid cation, N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium cation. Adv Phys Chem 2012:829523Google Scholar
  92. 92.
    Tariq M, Forte PAS, Gomes MFC, Lopes JNC, Rebelo LPN (2009) Densities and refractive indices of imidazolium- and phosphonium-based ionic liquids: effect of temperature, alkyl chain length, and anion. J Chem Thermodyn 41(6):790–798CrossRefGoogle Scholar
  93. 93.
    Vercher E, Orchillés AV, Miguel PJ, Martínez-Andreu A (2007) Volumetric and ultrasonic studies of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid with methanol, ethanol, 1-propanol, and water at several temperatures. J Chem Eng Data 52(4):1468–1482CrossRefGoogle Scholar
  94. 94.
    Vogel M, Rössler E (2000) Effects of various types of molecular dynamics on 1D and 2D \(^2\!\)H NMR studied by random walk simulations. J Mag Res 147(1):43–58CrossRefGoogle Scholar
  95. 95.
    Vogel M, Rössler E (2000) On the nature of slow \(\beta \)-process in simple glass formers: A \(^2\!\)H NMR study. J Phys Chem B 104:4285–4287CrossRefGoogle Scholar
  96. 96.
    Vogel M, Tschirwitz C, Schneider G, Koplin C, Medick P, Rössler E (2002) A 2h nmr and dielelectric spectroscopy study of the slow beta-process in organic glass formers. J Non-Cryst Solids 307–310:326–335CrossRefGoogle Scholar
  97. 97.
    Wakai C, Oleinikova A, Ott M, Weingärtner H (2005) How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy. J Phys Chem B 109(36):17,028–17,030CrossRefGoogle Scholar
  98. 98.
    Wang Y, Sun CN, Fan F, Sangoro JR, Berman MB, Greenbaum SG, Zawodzinski TA, Sokolov AP (2013) Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization. Phys Rev E 87(4):42,308CrossRefGoogle Scholar
  99. 99.
    Wang Y, Griffin PJ, Holt A, Fan F, Sokolov AP (2014) Observation of the slow, Debye-like relaxation in hydrogen-bonded liquids by dynamic light scattering. J Chem Phys 140(10):104,510CrossRefGoogle Scholar
  100. 100.
    Weingärtner H, Nadolny H, Oleinikova A, Ludwig R (2004) Collective contributions to the dielectric relaxation of hydrogen-bonded liquids. J Chem Phys 120(11):692Google Scholar
  101. 101.
    Williams G (1972) Use of the dipole correlation function in dielectric relaxation. Chem Rev 72:55–69CrossRefGoogle Scholar
  102. 102.
    Williams G, Watts DC (1971) Analysis of molecular motion in the glassy state. Trans Farad Soc 67:1971–1989CrossRefGoogle Scholar
  103. 103.
    Williams G, Cook M, Hains PJ (1972) Molecular motion in amorphous polymers. J Chem Soc: Farad Trans II 68:1045–1050Google Scholar
  104. 104.
    Wübbenhorst M, van Turnhout J (2002) Analysis of complex dielectric spectra. I. One-dimensional derivative techniques and three-dimensional modelling. J Non Cryst Solids 305(1–3):40–49CrossRefGoogle Scholar
  105. 105.
    Wulf A, Ludwig R, Sasisanker P, Weingärtner H (2007) Molecular reorientation in ionic liquids: a comparative dielectric and magnetic relaxation study. Chem Phys Lett 439(4):323–326CrossRefGoogle Scholar
  106. 106.
    Young-Gonzales AR, Richert R (2016) Field induced changes in the ring/chain equilibrium of hydrogen bonded structures: 5-methyl-3-heptanol. J Chem Phys 145(7):Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • J. Gabriel
    • 1
  • F. Pabst
    • 1
  • A. Helbling
    • 1
  • T. Böhmer
    • 1
  • T. Blochowicz
    • 1
  1. 1.Institute of Condensed Matter PhysicsDarmstadtGermany

Personalised recommendations