Advertisement

Dynamic Heterogeneities in Binary Glass-Forming Systems

  • D. Bock
  • Th. Körber
  • F. Mohamed
  • B. Pötzschner
  • E. A. Rössler
Chapter
Part of the Advances in Dielectrics book series (ADVDIELECT)

Abstract

Starting with an overview of major results of the main (α) and secondary (β) relaxation in neat glass formers as compiled by dielectric and nuclear magnetic resonance (NMR) spectroscopy as well as by light scattering, the contribution deals with elucidating the component dynamics in binary glass formers. Dynamically asymmetric mixtures with high-Tg contrast of their components are in focus. In addition to polymers, specially synthesized non-polymeric glass formers are considered as high-Tg component and mixed with a low-Tg simple liquid. While the high-Tg component in the mixtures shows relaxation features similar to that of neat glass formers, the low-Tg component displays significantly faster dynamics and pronounced dynamic heterogeneities, i.e., an extremely broad distribution of correlation times G(lnτ), which may lead to quasi-logarithmic correlation functions. Two glass transition temperatures with non-trivial concentration dependences are identified. The dynamic heterogeneities are transient in nature as proven by 2D exchange NMR. Thus, liquid-like (isotropic) reorientation of the low-Tg additive as well as exchange within its distribution G(lnτ) is observed in an essentially rigid high-Tg matrix. The results show similarity with those collected for glass formers in confining geometries, suggesting that in asymmetric binary glass formers (intrinsic) confinement effects may control the dynamics either. We also investigate the β-process in the mixed glasses introduced by the low-Tg additive. It is rediscovered for all concentrations with virtually unchanged time constants. NMR identifies the β-relaxations as being similar to those of neat glasses. A spatially highly restricted motion with an angular displacement below ±10° encompasses all molecules. Very similar spectral features are observed for the high-Tg component in NMR. Apparently, the (small) additive molecules “enslave” the large molecules to perform a common hindered reorientation. At lowest additive concentrations, one finds indications that the β-process starts to disintegrate. We conclude that the β-process is a cooperative process.

Notes

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (DFG) through the projects RO 907/10,11,15,19 is acknowledged. We also appreciate the cooperation with H.-W. Schmidt and K. Kreger (Macromolecular Chemistry II, Bayreuth) regarding the synthesis of the non-polymeric high-Tg glass formers.

Literature

  1. 1.
    Götze W (1999) J Phys: Condens Matter 11:A1Google Scholar
  2. 2.
    Ediger MD (2000) Annu Rev Phys Chem 51:99CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lunkenheimer P, Schneider U, Brand R, Loidl A (2000) Contemp Phys 41:15CrossRefGoogle Scholar
  4. 4.
    Dyre J (2006) Rev Mod Phys 78:953CrossRefGoogle Scholar
  5. 5.
    Blochowicz T, Brodin A, Rössler EA (2006) Adv Chem Phys 133:127Google Scholar
  6. 6.
    Cavagna A (2009) Phys Rep 476:51CrossRefGoogle Scholar
  7. 7.
    Binder K, Kob W (2011) Glassy materials and disoredered solids. World Scientific, New JerseyCrossRefGoogle Scholar
  8. 8.
    Berthier L, Biroli G (2011) Rev Mod Phys 83:587CrossRefGoogle Scholar
  9. 9.
    Richert R (2011) Annu Rev Phys Chem 62:65CrossRefPubMedGoogle Scholar
  10. 10.
    Floudas G, Paluch M, Grzybowski A, Ngai KL (2011) Molecular dynamics of Glass-forming systems. Springer, BerlinCrossRefGoogle Scholar
  11. 11.
    Wolynes PG, Lubchenko V (eds) (2012) Structural glasses and supercooled liquids, Wiley, HobokenGoogle Scholar
  12. 12.
    Petzold N, Schmidtke B, Kahlau R, Bock D, Meier R, Micko B, Kruk D, Rössler EA (2013) J Chem Phys 138:12A510CrossRefPubMedGoogle Scholar
  13. 13.
    Schmidtke B, Petzold N, Kahlau R, Rössler EA (2013) J Chem Phys 139:084504CrossRefPubMedGoogle Scholar
  14. 14.
    Sillescu H (1999) J Non-Cryst Solids 243:81CrossRefGoogle Scholar
  15. 15.
    Berthier L, Biroli G, Bouchaud J-P van Saarloos W (2011) Dynamical heterogeneities in glasses, colloids and granular matter. Oxford Press, OxfordGoogle Scholar
  16. 16.
    Ediger MD, Harrowell P (2012) J Chem Phys 137:080901CrossRefPubMedGoogle Scholar
  17. 17.
    Stillinger FH, Debenedetti PG (2013) Annu Rev Condens Matter Phys 4:263CrossRefGoogle Scholar
  18. 18.
    Donati C, Glotzer SC, Poole PH, Kob W, Plimpton SJ (1999) Phys Rev E 60:3107CrossRefGoogle Scholar
  19. 19.
    Doliwa B, Heuer A (2000) Phys Rev E 61:6898CrossRefGoogle Scholar
  20. 20.
    Karmakar S, Dasgupta C, Sastry S (2009) Proc Natl Acad Sci 106:3675CrossRefPubMedGoogle Scholar
  21. 21.
    Puosi F, Leporini D (2012) J Chem Phys 136:164901CrossRefPubMedGoogle Scholar
  22. 22.
    Brun C, Ladieu F, l´Hote D, Tarzia M, Biroli G, Bouchaud J-P (2011) Phys Rev B 84:104204Google Scholar
  23. 23.
    Lunkenheimer P, Michl M, Bauer Th, Loidl A (2017) Eur Phys J Special Topics 226:3157CrossRefGoogle Scholar
  24. 24.
    Utracki LA (1989) Polymer alloys and blends: thermodynamics and rheology. Hanser Verlag, Munich Google Scholar
  25. 25.
    Hains PJ, Williams G (1975) Polymer 16:725CrossRefGoogle Scholar
  26. 26.
    Desando MA, Walker S, Baarschers WH (1980) J Chem Phys 73:3460CrossRefGoogle Scholar
  27. 27.
    Scandola M, Ceccorulli G, Pizzoli M (1987) Polymer 28:2081CrossRefGoogle Scholar
  28. 28.
    Nakazawa M, Urakawa O, Adachi K (2000) Macromolecules 33:7898CrossRefGoogle Scholar
  29. 29.
    Bingemann D, Wirth N, Gmeiner J, Rössler EA (2007) Macromolecules 40:5379CrossRefGoogle Scholar
  30. 30.
    Cerveny S, Alegria A, Colmenero J (2008) Phys Rev E 77:031803CrossRefGoogle Scholar
  31. 31.
    Goracci G, Arbe A, Alegria A, Su Y, Gasser U, Colmenero J (2016) J Chem Phys 45:1676Google Scholar
  32. 32.
    Blochowicz T, Karle C, Kudlik A, Medick P, Roggatz I, Vogel M, Tschirwitz C, Wolber J, Senker J, Rössler E (1999) J Phys Chem B 103:4032CrossRefGoogle Scholar
  33. 33.
    Blochowicz T, Schramm S, Lusceac S, Vogel M, Stühn B, Gutfreund P, Frick B (2012) Phys Rev Lett 109:035702CrossRefPubMedGoogle Scholar
  34. 34.
    Blochowicz T, Rössler EA (2004) Phys Rev Lett 92:225701CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ediger MD, Lutz TR, He Yiyong (2006) J Non-Crystal Solids 352:4718Google Scholar
  36. 36.
    Kessairi K, Capaccioli S, Prevosto D, Lucchesi M, Rolla P (2007) J Chem Phys 127:174502CrossRefPubMedGoogle Scholar
  37. 37.
    Cangialosi D, Alegria A, Colmenero J (2008) J Chem Phys 128:224508CrossRefPubMedGoogle Scholar
  38. 38.
    Blochowicz T, Lusceac SA, Gutfreund P, Schramm S, Stühn B (2011) J Phys Chem B 115:1623CrossRefPubMedGoogle Scholar
  39. 39.
    Capaccioli S, Kessairi K, Shahin M, Prevosto D, Lucchesi M (2011) J Non-Cryst Solids 357:251CrossRefGoogle Scholar
  40. 40.
    Shirata Y (2000) J Mater Chem 10:1CrossRefGoogle Scholar
  41. 41.
    Kremer F, Huwe A, Arndt M, Behrens P, Schwieger W (1999) J Phys Cond Matter 11:A175CrossRefGoogle Scholar
  42. 42.
    Scheidler P, Kob W, Binder K (2000) Europhys Lett 52:277CrossRefGoogle Scholar
  43. 43.
    Lusceac SA, Koplin C, Medick P, Vogel M, Brodie-Linder N, LeQuellec C, Alba-Simionesco C, Rössler EA (2004) J Phys Chem B 108:16601CrossRefGoogle Scholar
  44. 44.
    Alba-Simionesco C, Coasne B, Dosseh G, Dudziak G, Gubbins KE, Radhakristhan R, Sliwinska-Bartkowiak M (2006) J Phys: Condens Matter 18:R15Google Scholar
  45. 45.
    Lodge TP, Wood ER, Haley JC (2006) J Polymer Sci Part B Polymer Phys 44:756CrossRefGoogle Scholar
  46. 46.
    McKenna GB (2007) Confit III Summary and perspectives on dynamics in confinement. Eur Phys J Spec Top 141:291CrossRefGoogle Scholar
  47. 47.
    Schönhals A, Goering H, Schick C, Frick B, Mayorova M, Zorn R (2007) Eur Phys J Special Topics 141:255CrossRefGoogle Scholar
  48. 48.
    Buntkowsky G, Breitzke H, Adamczyk A, Roelofs E, Emmler T, Gedat E, Grunberg B, Xu YP, Limbach HH, Shenderovich I, Vyalikh A, Findenegg AG (2007) Phys Chem Chem Phys 9:484CrossRefGoogle Scholar
  49. 49.
    Gradmann S, Medick P, Rössler EA (2009) J Phys Chem B 113:8443CrossRefPubMedGoogle Scholar
  50. 50.
    Bock D, Petzold N, Kahlau R, Gradmann S, Schmidtke B, Benoit N, Rössler EA (2015) J Non-Cryst Solids 407:88CrossRefGoogle Scholar
  51. 51.
    Schmidt-Rohr K, Spiess HW (1991) Phys Rev Lett 66:3020CrossRefPubMedGoogle Scholar
  52. 52.
    Schiener B, Chamberlin RV, Diezemann G, Böhmer R (1997) J Chem Phys 107:7746CrossRefGoogle Scholar
  53. 53.
    Tracht U, Wilhelm M, Heuer A, Feng H, Schmidt-Rohr K, Spiess HW (1998) Phys Rev Lett 81:2727CrossRefGoogle Scholar
  54. 54.
    Vidal Russel E, Israeloff NE (2000) Nature 408:695CrossRefGoogle Scholar
  55. 55.
    Blochowicz T, Rössler EA (2005) J Chem Phys 122:224511CrossRefPubMedGoogle Scholar
  56. 56.
    Papon A, Montes H, Hanafi M, Lequeux F, Guy L, Saalwächter K (2012) Phys Rev Lett 108:065702CrossRefPubMedGoogle Scholar
  57. 57.
    Pizzoli M, Scandola M, Ceccorulli G (1987) Eur Polym J 23:843CrossRefGoogle Scholar
  58. 58.
    Savin DA, Larson AM, Lodge TP (2004) J Polym Sci B Polym Phys 42:1137CrossRefGoogle Scholar
  59. 59.
    Miwa Y, Usami K, Yamamoto K, Sakaguchi M, Sakai M, Shimada S (2005) Macromolecules 38:2355CrossRefGoogle Scholar
  60. 60.
    Lipson JEG, Milner ST (2006) J Pol Sci Part B Pol Phys 24:3528CrossRefGoogle Scholar
  61. 61.
    Gaikwad AN, Wood ER, Ngai T, Lodge TP (2008) Macromolecules 41:2502CrossRefGoogle Scholar
  62. 62.
    Leroy, E, Alegria, A, Colmenero, J (2002)Google Scholar
  63. 63.
    Mpoukouvalas K, Floudas G (2008) Macromolecules 41:1552CrossRefGoogle Scholar
  64. 64.
    Schmidt-Rohr K, Spiess HW (1994) multidimensional solid-state NMR and polymers. Academic Press, New YorkGoogle Scholar
  65. 65.
    Vogel M, Rössler E (1998) J Phys Chem A 102:2102CrossRefGoogle Scholar
  66. 66.
    Medick P, Vogel M, Rössler E (2002) J Magn Reson 159:126CrossRefGoogle Scholar
  67. 67.
    Kahlau R, Bock D, Schmidtke B, Rössler EA (2014) J Chem Phys 140:044509CrossRefPubMedGoogle Scholar
  68. 68.
    Bock D, Kahlau R, Pötzschner B, Körber T, Wagner E, Rössler EA (2014) J Chem Phys 140:094505CrossRefPubMedGoogle Scholar
  69. 69.
    Pötzschner  B, Mohamed F, Lichtinger A, Bock D, Rössler EA (2015) J Chem Phys 143:154506CrossRefPubMedGoogle Scholar
  70. 70.
    Pötzschner B, Mohamed F, Bächer C, Wagner E, Lichtinger A, Minikejew R, Kreger K, Schmidt H-W, Rössler EA (2017) J Chem Phys 146:164503CrossRefPubMedGoogle Scholar
  71. 71.
    Johari G, Goldstein M (1970) J Chem Phys 53:2372CrossRefGoogle Scholar
  72. 72.
    McCrum NG, Read BE, Williams G (1991) Anelastic and dielectric effects in polymer solids. Wiley, New YorkGoogle Scholar
  73. 73.
    Wu L (1991) Phys Rev B 43:9906CrossRefGoogle Scholar
  74. 74.
    Garwe F, Schönhals A, Lockwenz H, Beiner M, Schröter K (1996) Donth E Macromol 29:247CrossRefGoogle Scholar
  75. 75.
    Kudlik A, Benkhof S, Blochowicz T, Tschirwitz C, Rössler E (1999) J Mol Struct 479:201CrossRefGoogle Scholar
  76. 76.
    Kremer F, Schönhals A (2002) Broadband dielectric spectroscopy. Springer, BerlinGoogle Scholar
  77. 77.
    Gainaru C, Böhmer R, Kahlau R, Rössler EA (2009) J Chem Phys 131:184510CrossRefPubMedGoogle Scholar
  78. 78.
    Floudas G, Paluch M, Grzybowski A, Ngai KL (2011) Molecular dynamics of glass-forming systems. Springer, BerlinGoogle Scholar
  79. 79.
    Kahlau R, Dörfler T, Rössler EA (2013) J Chem Phys 139:134504CrossRefPubMedGoogle Scholar
  80. 80.
    Jakobsen B, Niss K, Maggi C, Olsen NB, Christensen T, Dyre JC (2011) J of Non-Cryst Solids 357:267CrossRefGoogle Scholar
  81. 81.
    Gainaru C, Rivera A, Putselyk S, Eska G, Rössler EA (2005) Phys Rev B 72:174203CrossRefGoogle Scholar
  82. 82.
    Pohl RO, Liu X, Thompson E (2002) Rev Mod Phys 74:991CrossRefGoogle Scholar
  83. 83.
    Ngai KL, Paluch M (2004) J Chem Phys 120:857CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Mierzwa M, Pawlus S, Paluch M, Kaminska E, Ngai KL (2008) J Chem Phys 128:044512CrossRefPubMedGoogle Scholar
  85. 85.
    Capaccioli S, Paluch M, Prevosto D, Wang Li-Min, Ngai K L (2012) J Phys Chem Lett 3:6Google Scholar
  86. 86.
    Rössler R; Taupitz M, Richert R, Blumen A (eds) (1994) Disorder effects on relaxational processes, glasses, polmers, proteins. Springer, BerlinGoogle Scholar
  87. 87.
    Arbe A, Colmenero J, Frick B, Monkenbusch M, Richter D (1998) Macromolecules 31:4926CrossRefPubMedGoogle Scholar
  88. 88.
    Vogel M, Rössler EA (2000) J Phys Chem B 104:4285CrossRefGoogle Scholar
  89. 89.
    Vogel M, Rössler EA (2001) J Chem Phys 114:5802CrossRefGoogle Scholar
  90. 90.
    Vogel M, Rössler EA (2001) J Chem Phys 115:10883CrossRefGoogle Scholar
  91. 91.
    Vogel M, Tschirwitz C, Schneider G, Koplin C, Medick P, Rössler EA (2002) J Non-Cryst Solids 307:326CrossRefGoogle Scholar
  92. 92.
    Vogel M, Medick P, Rössler EA (2005) Annu Rep NMR Spectrosc 56:231CrossRefGoogle Scholar
  93. 93.
    Bock D, Kahlau R, Micko B, Pötzschner B, Schneider GJ, Rössler EA (2013) J Chem. Phys 139:064508CrossRefPubMedGoogle Scholar
  94. 94.
    Micko B, Tschirwitz C, Rössler EA (2013) J Chem Phys 138:154501CrossRefPubMedGoogle Scholar
  95. 95.
    Micko B, Lusceac SA, Zimmermann H, Rössler EA (2013) J Chem Phys 138:074503CrossRefPubMedGoogle Scholar
  96. 96.
    Vogel M, Rössler E (2000) J Magn Reson 147:43CrossRefPubMedGoogle Scholar
  97. 97.
    Wagner H, Richert R (1998) J Non-Crystalline Solids 242:19CrossRefGoogle Scholar
  98. 98.
    Micko B, Kruk D, Rössler EA (2013) J Chem Phys 138:074504CrossRefPubMedGoogle Scholar
  99. 99.
    Fragiadakis D, Roland CM (2014) Phys Rev E 89:052304CrossRefGoogle Scholar
  100. 100.
    Williams G, Watts DC (1971) NMR basic principles and progress. In: Diehl P, Flick E, Kosfeld E (eds) Springer, Berlin, vol 4, p 271Google Scholar
  101. 101.
    Hinze G, Fujara F, Sillescu H (1995) Chem Phys Lett 232:154CrossRefGoogle Scholar
  102. 102.
    Körber Th, Mohamed F, Hofmann M, Lichtinger A, Willner L, Rössler EA (2017) Macromolecules 50:1554CrossRefGoogle Scholar
  103. 103.
    Körber Th, Rössler E A unpublished resultsGoogle Scholar
  104. 104.
    Tu W, Valenti S, Ngai KL, Capaccioli S, Liu YD, Wang LM (2017) J Phys Chem Lett 8:4341CrossRefPubMedGoogle Scholar
  105. 105.
    Schmidt-Rohr K, Kulik AS, Beckham HW, Ohlemacher A, Pawelzik U, Boeffel C, Spiess HW (1994) Macromolecules 27:4733CrossRefGoogle Scholar
  106. 106.
    Kulik AS, Beckham HW, Schmidt-Rohr K, Radloff D, Pawelzik U, Boeffel C, Spiess HW (1994) Macromolecules 27:4746CrossRefGoogle Scholar
  107. 107.
    Johari GP (2002) J Non-Cryst Solids 307:317CrossRefGoogle Scholar
  108. 108.
    Le Losq C, Neuville DR, Chen W, Florian P, Massiot D, Zhou Z, Greaves GN (2017) Sci Rep 7:16490CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Yu H-B, Richert R, Samwer K (2017) Sci Adv e1701577Google Scholar
  110. 110.
    Bosse J, Kaneko Y (1995) Phys Rev Lett 74:4023CrossRefPubMedGoogle Scholar
  111. 111.
    Böhmer R, Diezemann G, Hinze G, Rössler EA (2001) Prog Nucl Magn Reson Spectr 39:191CrossRefGoogle Scholar
  112. 112.
    Fujara F, Wefing S, Spiess HW (1986) J Chem Phys 84:4579CrossRefGoogle Scholar
  113. 113.
    Resing H (1965) J Chem Phys 43:669CrossRefGoogle Scholar
  114. 114.
    Kambour RP, Kelly JM, McKinley BJ, Cauley BJ, Inglefield PT, Jones AA (1998) Macromolecules 21:2937CrossRefGoogle Scholar
  115. 115.
    Rössler E, Taupitz M, Börner K, Schulz M, Vieth HM (1990) J Chem Phys 92:5847CrossRefGoogle Scholar
  116. 116.
    He Y, Lutz TR, Ediger MD, Ayyagari C, Bedrov D, Smith GD (2004) Macromolecules 37:5032CrossRefGoogle Scholar
  117. 117.
    Schramm S (2011) PhD thesis, University DarmstadtGoogle Scholar
  118. 118.
    Xiang TX, Anderson BD (2005) Pharm Res 22:1205CrossRefPubMedGoogle Scholar
  119. 119.
    Capponi S, Arbe A, Cerveny S, Busselez R, Frick B, Embs JP, Colmenero J (2011) J Chem Phys 134:204906CrossRefPubMedGoogle Scholar
  120. 120.
    Busselez R, Arbe A, Cerveny S, Capponi S, Colmenero J, Frick B (2012) J Chem Phys 137:084902CrossRefPubMedGoogle Scholar
  121. 121.
    Valenti S, Cappaccioli S, Ngai KL (2018) J Chem Phys 148:2018CrossRefGoogle Scholar
  122. 122.
    Jensen MH, Gainaru C, Alba-Siomionesco C, Hecksher T, Niss K (2017) Phys Chem Chem Phys 20:1716CrossRefGoogle Scholar
  123. 123.
    Flämig M, Gabrielyan L, Rössler E A, to be publishedGoogle Scholar
  124. 124.
    Floudas G, Steffen W, Fischer EW (1992) J Chem Phys 99:695CrossRefGoogle Scholar
  125. 125.
    Zetsche A, Fischer EW (1994) Acta Polym 45:168CrossRefGoogle Scholar
  126. 126.
    Kumar SK, Colby RH, Anastasiadis SH, Fytas G (1996) J Chem Phys 105:3777CrossRefGoogle Scholar
  127. 127.
    Kant R, Kumar SK (2003) Macromolecules 36:10087CrossRefGoogle Scholar
  128. 128.
    Chung GC, Kornfield JA, Smith SD (1994) Macromolecules 27:964CrossRefGoogle Scholar
  129. 129.
    Lodge TB, McLeish TCB (2000) Macromolecules 33:5278CrossRefGoogle Scholar
  130. 130.
    Voigtmann T, Horbach J (2009) Phys Rev Lett 103:205901CrossRefPubMedGoogle Scholar
  131. 131.
    Moreno AJ, Colmenero J (2006) J Chem Phys 125:164507CrossRefPubMedGoogle Scholar
  132. 132.
    Krakoviack V (2005) Phys Rev Lett 94:065703CrossRefPubMedGoogle Scholar
  133. 133.
    Kurzidim J, Coslovich D, Kahl G (2011) J Phys: Condens Matter 23:234122Google Scholar
  134. 134.
    Höfling F, Franosch T, Frey E (2006) Phys Rev Lett 96:165901CrossRefPubMedGoogle Scholar
  135. 135.
    Minikejew R, Rössler E A, unpublished resultsGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • D. Bock
    • 1
  • Th. Körber
    • 1
  • F. Mohamed
    • 1
  • B. Pötzschner
    • 1
  • E. A. Rössler
    • 1
  1. 1.Universität BayreuthBayreuthGermany

Personalised recommendations