Advertisement

Universality of Density Scaling

  • Andrzej Grzybowski
  • Marian Paluch
Chapter
Part of the Advances in Dielectrics book series (ADVDIELECT)

Abstract

Investigations of the sought after complete and commonly accepted theory of the glass transition and related phenomena have recently gained an essential support from a very promising idea of the density scaling of molecular dynamics in viscous liquids. This idea, often known as the thermodynamic scaling concept, has been initiated by many phenomenological observations, which have shown that dynamic quantities (e.g., viscosity, structural relaxation time, or segmental relaxation time in case of polymers) measured in different thermodynamic conditions (e.g., along different isobars and isotherms) can be scaled onto one master curve well described by a function of the single variable that is a product of the inverse temperature and the density power with the scaling exponent considered as a material constant independent of thermodynamic conditions. However, a crucial advantage of the phenomenological description has become its theoretical grounds relied on an effective short-range intermolecular potential, which has been derived from the well-known Lennard-Jones potential and satisfactorily verified by computer simulations. A relation suggested between the scaling exponent and the exponent of the dominant repulsive part of the effective intermolecular potential gives a tempting opportunity to study the macroscopic properties of materials by using the underlying intermolecular potential and vice versa to determine the intermolecular potential parameters based on measurements of macroscopic quantities. It opens new perspectives for our better understanding of complex physicochemical phenomena occurring near the glass transition. In this chapter, we present the density scaling concept as the idea that bears hallmarks of universality in case of both various materials and different quantities. We show that the density scaling law may concern not only dynamic but also thermodynamic quantities, constituting a convenient tool to explore relationships between molecular dynamics and thermodynamics based on the effective short-range intermolecular potential. We demonstrate predictive capabilities of the density scaling law that implies several rules for activation quantities and fragility parameters defined in different thermodynamic conditions, which enable to discover and verify physically well-defined invariants. We also discuss some nontrivial cases of the thermodynamic scaling for which the power density scaling law with a constant scaling exponent is not sufficient, but we can find density or timescale-dependent counterparts of the exponent. The exceptions to the standard power density scaling law delimit further challenges in making progress toward the development of the density scaling idea and its applicability range.

Notes

Acknowledgements

The authors are deeply thankful for receiving the research project within the program MAESTRO 2 financed by the Polish National Science Center, based on Decision No. DEC-2012/04/A/ST3/00337.

References

  1. 1.
    Anderson PW (1995) Science 267:1615CrossRefPubMedGoogle Scholar
  2. 2.
    Roland CM, Hensel-Bielowka S, Paluch M, Casalini R (2005) Rep Prog Phys 68:1405CrossRefGoogle Scholar
  3. 3.
    Floudas G, Paluch M, Grzybowski, Ngai KL (2011) In: Kremer F (ed) Molecular dynamics of glass-forming systems: effects of pressure. Advances in dielectrics, chap. 2, Springer, BerlinGoogle Scholar
  4. 4.
    Gnan N, Schrøder TB, Pedersen UR, Bailey NP, Dyre JC (2009) J Chem Phys 131:234504CrossRefPubMedGoogle Scholar
  5. 5.
    Wojnarowska Z, Paluch M (2016) High-pressure dielectric spectroscopy for studying the charge transfer in ionic liquids and solids, chap. 4. In: Paluch M (ed) Dielectric properties of ionic liquids. Advances in dielectrics, Kremer F (ed), Springer, BerlinGoogle Scholar
  6. 6.
    Paluch M, Grzybowska K Grzybowski A (2007) J Phys Condens Matter 19: 205117Google Scholar
  7. 7.
    Pedersen UR, Bailey NP, Schrøder TB, Dyre JC (2008) Phys Rev Lett 100:015701CrossRefPubMedGoogle Scholar
  8. 8.
    Bailey NP, Pedersen UR, Gnan N, Schrøder TB, Dyre JC (2008) J Chem Phys 129:184507CrossRefPubMedGoogle Scholar
  9. 9.
    Bailey NP, Pedersen UR, Gnan N, Schrøder TB, Dyre JC (2009) J Chem Phys 130:039902CrossRefGoogle Scholar
  10. 10.
    Bailey NP, Pedersen UR, Gnan N, Schrøder TB, Dyre JC (2008) J Chem Phys 129:184508CrossRefPubMedGoogle Scholar
  11. 11.
    Coslovich D, Roland CM (2008) J Phys Chem B 112:1329CrossRefPubMedGoogle Scholar
  12. 12.
    Coslovich D, Roland CM (2009) J Chem Phys 130:014508CrossRefPubMedGoogle Scholar
  13. 13.
    Schrøder TB, Pedersen UR, Bailey NP, Toxvaerd S, Dyre JC (2009) Phys Rev E 80:041502CrossRefGoogle Scholar
  14. 14.
    Pedersen UR, Schrøder TB, Dyre JC (2010) Phys Rev Lett 105:157801CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ngai KL, Casalini R, Capaccioli S, Paluch M, Roland CM (2005) J Phys Chem B 109:17356CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Roland CM, Casalini R, Paluch M (2003) Chem Phys Lett 367:259CrossRefGoogle Scholar
  17. 17.
    Xiao W, Tofteskov J, Christensen TV, Dyre JC, Niss K (2015) J Non-Cryst Solids 407:190CrossRefGoogle Scholar
  18. 18.
    Froehlich H (1987) Theory of dielectrics, dielectric constant and dielectric loss, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  19. 19.
    Kremer F, Schonhals A (2003) Broadband dielectric spectroscopy. Springer, BerlinCrossRefGoogle Scholar
  20. 20.
    Grzybowska K, Grzybowski A, Pawlus S, Pionteck J, Paluch M (2015) Phys Rev E 91:062305CrossRefGoogle Scholar
  21. 21.
    Grzybowski A, Koperwas K, Kolodziejczyk K, Grzybowska K, Paluch M (2013) J Phys Chem Lett 4:4273CrossRefPubMedGoogle Scholar
  22. 22.
    Ngai KL, Habasaki J, Prevosto D, Capaccioli S, Paluch M (2012) J Chem Phys 137:034511CrossRefPubMedGoogle Scholar
  23. 23.
    Ngai KL, Habasaki J, Prevosto D, Capaccioli S, Paluch M (2014) J Chem Phys 140:019901CrossRefGoogle Scholar
  24. 24.
    Ngai KL, Paluch M (2017) J Non-Cryst Solids J Non-Cryst Solids 478:1CrossRefGoogle Scholar
  25. 25.
    Tsang KY, Ngai KL (1996) Phys Rev E 54:R3067CrossRefGoogle Scholar
  26. 26.
    Ngai KL (2003) J Phys: Condens Matter 15:S1107Google Scholar
  27. 27.
    Ngai KL (2011) Relaxation and diffusion in complex systems. Springer, New YorkCrossRefGoogle Scholar
  28. 28.
    Williams G (1964) Trans Faraday Soc 60:1548CrossRefGoogle Scholar
  29. 29.
    Floudas G, Paluch M, Grzybowski A, Ngai KL (2011) In: Kremer F (ed) Molecular dynamics of glass-forming systems: effects of pressure. Advances in dielectrics, chap. 1, Springer, BerlinGoogle Scholar
  30. 30.
    Ferrer ML et al (1998) J Chem Phys 109:8010CrossRefGoogle Scholar
  31. 31.
    Casalini R, Roland CM (2003) J Chem Phys 119:4052CrossRefGoogle Scholar
  32. 32.
    Casalini R, Roland CM (2004) Phys Rev E 69:062501CrossRefGoogle Scholar
  33. 33.
    Masiewicz E, Grzybowski A, Sokolov AP, Paluch M (2012) J Phys Chem Lett 3:2643CrossRefPubMedGoogle Scholar
  34. 34.
    Paluch M, Masiewicz E, Grzybowski A, Pawlus S, Pionteck J, Wojnarowska Z (2014) J Chem Phys 141:134507CrossRefPubMedGoogle Scholar
  35. 35.
    Tarjus G, Kivelson D, Mossa S, Alba-Simionesco C (2004) J Chem Phys 120:6135CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Casalini R, Roland CM (2005) Phys Rev B 71:014210CrossRefGoogle Scholar
  37. 37.
    Casalini R, Roland CM (2005) Phys Rev E 72:031503CrossRefGoogle Scholar
  38. 38.
    Alba-Simionesco C, Tarjus G (2006) J Non-Cryst Solids 352:4888CrossRefGoogle Scholar
  39. 39.
    Grzybowski A, Grzybowska K, Zioło J, Paluch M (2006) Phys Rev E 74:041503CrossRefGoogle Scholar
  40. 40.
    Casalini R, Roland CM (2007) Phys Rev E 76:013501CrossRefGoogle Scholar
  41. 41.
    Grzybowski A, Grzybowska K, Zioło J, Paluch M (2007) Phys Rev E 76:013502CrossRefGoogle Scholar
  42. 42.
    Angell CA (1995) Science 267:1924CrossRefPubMedGoogle Scholar
  43. 43.
    Angell CA (1995) Proc Natl Acad Sci USA 92:6675CrossRefPubMedGoogle Scholar
  44. 44.
    Jedrzejowska A, Grzybowski A, Paluch M (2017) Phys Chem Chem Phys 19:18348CrossRefPubMedGoogle Scholar
  45. 45.
    Ingram MD, Imrie CT, Stoeva Z, Pas SJ, Funke K, Chandler HW (2005) J Phys Chem B 109:16567CrossRefPubMedGoogle Scholar
  46. 46.
    Ingram MD, Imrie CT, Ledru J, Hutchinson J (2008) J Phys Chem B 112:859CrossRefPubMedGoogle Scholar
  47. 47.
    Ingram MD, Imrie CT (2011) Solid State Ionics 196:9CrossRefGoogle Scholar
  48. 48.
    Koperwas K, Grzybowski A, Grzybowska K, Wojnarowska Z, Pionteck J, Sokolov AP, Paluch M (2012) Phys Rev E 86:041502CrossRefGoogle Scholar
  49. 49.
    Koperwas K, Grzybowski A, Tripathy SN, Masiewicz E, Paluch M (2015) Sci Rep 5:17782CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Thoms E, Grzybowski A, Pawlus S, Paluch M (2018) J Phys Chem Lett 9:1783Google Scholar
  51. 51.
    Casalini R, Bair S (2008) J Chem Phys 128:084511CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Mauro JC, Yue YZ, Ellison AJ, Gupta PK, Allan DC (2009) Proc Natl Acad Sci USA 106:19780CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Adam G, Gibbs JH (1965) J Chem Phys 43:139CrossRefGoogle Scholar
  54. 54.
    Gupta PK, Mauro JC (2009) J Chem Phys 130:094503CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Naumis GG (2006) J Non-Cryst Solids 352:4865CrossRefGoogle Scholar
  56. 56.
    Grzybowski A, Urban S, Mroz S, Paluch M (2017) Sci Rep 7:42174CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Masiewicz E, Grzybowski A, Grzybowska K, Pawlus S, Pionteck J, Paluch M (2015) Sci Rep 5:13998CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Johari GP (2003) J Chem Phys 119:635CrossRefGoogle Scholar
  59. 59.
    Casalini R, Roland CM (2007) Phil Mag 87:459CrossRefGoogle Scholar
  60. 60.
    Casalini R, Roland CM (2007) J Phys: Condens Matter 19:205118Google Scholar
  61. 61.
    Casalini R, Roland CM (2014) Phys Rev Lett 113:085701CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Xia X, Wolynes PG (2000) Proc Natl Acad Sci USA 97:2990CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Xia X, Wolynes PG (2001) Phys Rev Lett 86:5526CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Hall RW, Wolynes PG (2008) J Phys Chem B 112:301CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Sengupta S, Schrøder TB, Sastry S (2013) Eur Phys J E 36:141CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Johari GPJ (2000) Chem Phys 112:7518Google Scholar
  67. 67.
    Avramov I, Milchev A (1988) J Non-Cryst Solids 104:253CrossRefGoogle Scholar
  68. 68.
    Avramov I (1991) J Chem Phys 95:4439CrossRefGoogle Scholar
  69. 69.
    Avramov I (1996) Therm Acta 280/281:363Google Scholar
  70. 70.
    Avramov I (1997) J Mater Sci Lett 13:1367CrossRefGoogle Scholar
  71. 71.
    Avramov I (1998) J Non-Cryst Solids 238:6CrossRefGoogle Scholar
  72. 72.
    Avramov I (2000) J Non-Cryst Solids 262:258CrossRefGoogle Scholar
  73. 73.
    Avramov I, Grzybowski A, Paluch M (2009) J Non-Cryst Solids 355:733CrossRefGoogle Scholar
  74. 74.
    Casalini R, Mohanty U, Roland CM (2006) J Chem Phys 125:014505CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Grzybowski A, Paluch M, Grzybowska K, Haracz S (2010) J Chem Phys 133:161101CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Paluch M, Haracz S, Grzybowski A, Mierzwa M, Pionteck J, Rivera-Calzada A, Leon C (2010) J Phys Chem Lett 1:987CrossRefGoogle Scholar
  77. 77.
    Grzybowski A, Haracz S, Paluch M, Grzybowska K (2010) J Phys Chem B 114:11544CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Paluch M, Wojnarowska Z, Goodrich P, Jacquemin J, Pionteck J, Hensel-Bielowka S (2015) Soft Matter 11:6520CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Tait PG (1888) Physics and chemistry of the voyage of H. M. S. challenger, vol 2, Part 4. HMSO, LondonGoogle Scholar
  80. 80.
    Grzybowski A, Paluch M, Grzybowska K (2009) J Phys Chem B 113:7419CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Bardik VY, Shakun KS (2005) Ukr J Phys (Paris) 50:404Google Scholar
  82. 82.
    Papathanassiou AN (2009) Phys Rev E 79:032501CrossRefGoogle Scholar
  83. 83.
    Stickel F, Fischer EW, Richert R (1995) J Chem Phys 102:6251CrossRefGoogle Scholar
  84. 84.
    Grzybowski A, Grzybowska K, Paluch M, Swiety A, Koperwas K (2011) Phys Rev E 83:041505CrossRefGoogle Scholar
  85. 85.
    Grzybowski A, Koperwas K, Paluch M (2012) Phys Rev E 86:031501CrossRefGoogle Scholar
  86. 86.
    Garai J, Laugier AJ (2007) Appl Phys 101:023514CrossRefGoogle Scholar
  87. 87.
    Grzybowski A, Paluch M, Grzybowska K (2010) Phys Rev E 82:013501CrossRefGoogle Scholar
  88. 88.
    Chorążewski M, Grzybowski A, Paluch M (2014) Phys Chem Chem Phys 16:19900CrossRefPubMedGoogle Scholar
  89. 89.
    Grzybowski A, Koperwas K, Swiety-Pospiech A, Grzybowska K, Paluch M (2013) Phys Rev B 87:054105CrossRefGoogle Scholar
  90. 90.
    Kob W, Andersen HC (1994) Phys Rev Lett 73:1376CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Koperwas K, Grzybowski A, Grzybowska K, Wojnarowska Z, Paluch M (2015) J Non-Cryst Solids 407:196CrossRefGoogle Scholar
  92. 92.
    Berthier L, Biroli G, Bouchaud JP, Cipelletti L, El Masri D, L’Hôte D, Ladieu F, Pierno M (2005) Science 310:1797CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Tracht U, Wilhelm M, Heuer A, Feng H, Schmidt-Rohr K, Spiess HW (1998) Phys Rev Lett 81:2727CrossRefGoogle Scholar
  94. 94.
    Qiu XH, Ediger MD (2003) J Phys Chem B 107:459CrossRefGoogle Scholar
  95. 95.
    Crauste-Thibierge C, Brun C, Ladieu F, L’Hôte D, Biroli G, Bouchaud JP (2010) Phys Rev Lett 104:165703CrossRefPubMedGoogle Scholar
  96. 96.
    Bauer T, Lunkenheimer P, Loidl A (2013) Phys Rev Lett 111:225702CrossRefPubMedGoogle Scholar
  97. 97.
    Casalini R, Fragiadakis D, Roland CM (2015) J Chem Phys 142:064504CrossRefPubMedGoogle Scholar
  98. 98.
    Samanta S, Richert R (2014) J Chem Phys 140:054503CrossRefPubMedGoogle Scholar
  99. 99.
    Dalle-Ferrier C, Thibierge C, Alba-Simionesco C, Berthier L, Biroli G, Bouchaud JP, Ladieu F, L’Hôte D, Tarjus G (2007) Phys Rev E 76:041510CrossRefGoogle Scholar
  100. 100.
    Grzybowski A, Kolodziejczyk K, Koperwas K, Grzybowska K, Paluch M (2012) Phys Rev B 85:220201CrossRefGoogle Scholar
  101. 101.
    Koperwas K, Grzybowski A, Grzybowska K, Wojnarowska Z, Sokolov AP, Paluch M (2013) Phys Rev Lett 111:125701CrossRefPubMedGoogle Scholar
  102. 102.
    Berthier L (2011) Physics 4:42CrossRefGoogle Scholar
  103. 103.
    Schrøder TB, Dyre JC (2014) J Chem Phys 141:204502CrossRefPubMedGoogle Scholar
  104. 104.
    Ingebrigtsen TS, Bøhling L, Schrøder TB, Dyre JC (2012) J Chem Phys 136:061102CrossRefPubMedGoogle Scholar
  105. 105.
    Born M, Huang K (1954) Dynamical theory of crystal lattices. Oxford University Press, OxfordGoogle Scholar
  106. 106.
    Ross M, Young DA (1993) Ann Rev Phys Chem 44:61CrossRefGoogle Scholar
  107. 107.
    Burakovsky L, Preston DL (2004) J Phys Chem Solids 65:1581CrossRefGoogle Scholar
  108. 108.
    Bøhling L, Ingebrigtsen TS, Grzybowski A, Paluch M, Dyre JC, Schrøder TB (2012) New J Phys 14:113035CrossRefGoogle Scholar
  109. 109.
    Casalini R, Roland CM (2016) J Chem Phys 144:024502CrossRefPubMedGoogle Scholar
  110. 110.
    Grzybowski A, Koperwas K, Paluch M (2014) J Chem Phys 140:044502CrossRefPubMedGoogle Scholar
  111. 111.
    Kondrin MV, Gromnitskaya EL, Pronin AA, Lyapin AG, Brazhkin VV, Volkov AA (2012) J Chem Phys 137:084502CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Chorążewski M, Grzybowski A, Paluch M (2015) Ind Eng Chem Res 54:6400CrossRefGoogle Scholar
  113. 113.
    López ER, Fandiño O, Cabaleiro D, Lugo L, Fernández J (2018) Phys Chem Chem Phys 20:3531Google Scholar
  114. 114.
    Randzio SL, Deiters UK (1995) Ber Bunsenges Phys Chem 99:1179CrossRefGoogle Scholar
  115. 115.
    Deiters UK, Randzio SL (1995) Fluid Phase Equilib 103:199CrossRefGoogle Scholar
  116. 116.
    Dreyfus C, Le Grand A, Gapinski J, Steffen W, Patkowski A (2004) Eur Phys J B 42:309CrossRefGoogle Scholar
  117. 117.
    Win KZ Menon N (2006) Phys Rev E 73:040501(R)Google Scholar
  118. 118.
    Pronin AA, Kondrin MV, Lyapin AG, Brazhkin VV, Volkov AA, Lunkenheimer P, Loidl A (2010) JETP Lett 92:479CrossRefGoogle Scholar
  119. 119.
    Romanini M, Barrio M, Macovez R, Ruiz-Martin MD, Capaccioli S, Tamarit JL (2017) Sci Rep 7:1346CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Wojnarowska Z, Jarosz G, Grzybowski A, Pionteck J, Jacquemin J, Paluch M (2014) Phys Chem Chem Phys 16:20444CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Pawlus S, Paluch M, Grzybowski A (2011) J Chem Phys 134:041103CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Grzybowska K, Paluch M, Grzybowski A, Pawlus S, Ancherbak S, Prevosto D, Capaccioli S (2010) J Phys Chem Lett 1:1170CrossRefGoogle Scholar
  123. 123.
    Grzybowska K, Pawlus S, Mierzwa M, Paluch M, Ngai KL (2006) J Chem Phys 125:144507CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Silesian Center for Education and Interdisciplinary Research, Institute of PhysicsUniversity of Silesia in KatowiceChorzówPoland

Personalised recommendations