Advertisement

Glassy Dynamics as Reflected in the Inter- and Intra-molecular Interactions

  • Friedrich Kremer
  • Wilhelm Kossack
  • Arthur Markus Anton
Chapter
Part of the Advances in Dielectrics book series (ADVDIELECT)

Abstract

The inter- and intra-molecular interactions of low molecular weight and polymeric glass-forming model systems are studied by broadband dielectric (BDS) spectroscopy and Fourier-transform infrared (FTIR) spectroscopy. Analyzing the temperature dependence of specific IR absorption bands, reflecting the intra-molecular potentials of dedicated molecular moieties, enables one to unravel on an intra-molecular scale the process of glass formation and to compare it with the dielectrically determined primarily inter-molecular dynamics. Molecular systems to be studied are typical glass formers as the polyalcohols glycerol, threitol, xylitol, and sorbitol, as salol and three poly(ethylene-glycol) derivatives, namely poly(ethylene-glycol)methyl-ether-acrylate, poly(ethylene-glycol)phenyl-ether-acrylate, and poly(ethylene-glycol)-dibenzoate. Within this experimental framework, a wealth of novel information is obtained proving that the different molecular moieties of a glass former show characteristic features in the course of glassy solidification. This demonstrates the fundamental importance of intra-molecular dynamics for the dynamic glass transition, providing refined insights into the underlying interactions beyond coarse-grained models, approximating, for instance, glass-forming molecules as hard spheres.

References

  1. 1.
    Wong J, Angell CA (1976) Glass: structure by spectroscopy. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Donth EJ (1981) Glasübergang. Akademie Verlag, BerlinGoogle Scholar
  3. 3.
    Zallen R (1983) The physics of amorphous Solids. Wiley, New YorkCrossRefGoogle Scholar
  4. 4.
    Elliott SR (1990) Physics of amorphous materials. Longman Scientific & Technical, LondonGoogle Scholar
  5. 5.
    Donth EJ (1992) Relaxation and thermodynamics in polymers, glass transition. Akademie Verlag, BerlinGoogle Scholar
  6. 6.
    Donth EJ (2001) The glass transition. Springer Verlag, BerlinCrossRefGoogle Scholar
  7. 7.
    Ngai K (2011) Relaxation and diffusion in complex systems. Springer Verlag, BerlinCrossRefGoogle Scholar
  8. 8.
    Götze W (2012) Complex dynamics of glass-forming liquids—a mode-coupling theory. Oxford Scientific Publications, OxfordGoogle Scholar
  9. 9.
    Papadopoulos P, Kossack W, Kremer F (2013) Soft Matter 9:1600–1603CrossRefGoogle Scholar
  10. 10.
    Kossack W, Adrjanowicz K, Tarnacka M, Kipnusu WK, Dulski M, Mapesa EU, Kaminski K, Pawlus S, Paluch M, Kremer F (2013) Phys Chem Chem Phys 15:20641–20650CrossRefPubMedGoogle Scholar
  11. 11.
    Kipnusu WK, Kossack W, Iacob C, Zeigermann P, Jasiurkowska M, Sangoro JR, Valiullin R, Kremer F (2013) Soft Matter 9:4681–4686CrossRefGoogle Scholar
  12. 12.
    Kossack W, Kipnusu WK, Dulski M, Adrjanowicz K, Kaminska E, Mapesa EU, Tress M, Kaminski K, Kremer F (2014) Chem Phys 140:215101Google Scholar
  13. 13.
    Döß A, Paluch M, Sillescu H, Hinze G (2002) J Chem Phys 117(14):6582–6589CrossRefGoogle Scholar
  14. 14.
    Döß A, Paluch M, Sillescu H, Hinze G (2002) Phys Rev Lett 88:095701CrossRefPubMedGoogle Scholar
  15. 15.
    Kremer F, Schönhals A (eds) (2003) Broadband dielectric spectroscopy. SpringerGoogle Scholar
  16. 16.
    Adrjanowicz K, Kolodziejczyk K, Kipnusu WK, Tarnacka M, Mapesa EU, Kaminska E, Pawlus S, Kaminski K, Paluch M (2015) J Phys Chem C 119(25):14366CrossRefGoogle Scholar
  17. 17.
    Wagner H, Richert R (1999) J Chem Phys 110(23):11660–11663CrossRefGoogle Scholar
  18. 18.
    Paluch M, Roland CM, Pawlus S, Zioło J, Ngai KL (2003) Phys Rev Lett 91(11)Google Scholar
  19. 19.
    Böhmer R, Diezemann G, Geil B, Hinze G, Nowaczyk A, Winterlich M (2006) Phys Rev Lett 97(13)Google Scholar
  20. 20.
    Socrates G (2001) Infrared and Raman characteristic group frequencies. Tables and Charts, 3rd edn. WileyGoogle Scholar
  21. 21.
    Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41(1):48–76CrossRefGoogle Scholar
  22. 22.
    Blazhnov IV, Malomuzh NP, Lishchuk SV (2004) J Chem Phys 121(13):6435–6441CrossRefPubMedGoogle Scholar
  23. 23.
    Kastner S, Köhler M, Goncharov Y, Lunkenheimer P, Loidl A (2011) J Non-Cryst Solids Bd 357(2):510–514CrossRefGoogle Scholar
  24. 24.
    Lunkenheimer P, Kastner S, Köhler M, Loidl A (2010) PRE 81:051504CrossRefPubMedGoogle Scholar
  25. 25.
    Ngai KL, Lunkenheimer P, León C, Schneider U, Brand R, Loidl A (2001) J Chem Phys 115(3):1405–1413CrossRefGoogle Scholar
  26. 26.
    Köhler M, Lunkenheimer P, Goncharov Y, When R Loidl A (2010) J Non-Cryst Solids 356(11–17):529–534Google Scholar
  27. 27.
    Bahar I, Erman B, Kremer F, Fischer EW (1992) Macromolecules 25:816–825CrossRefGoogle Scholar
  28. 28.
    Ramos M, Correia NT, Diogo HP (2004) Phys Chem Chem Phys 6(4):793–798CrossRefGoogle Scholar
  29. 29.
    Hansen C (1997) Dissertation Universität MainzGoogle Scholar
  30. 30.
    Chang, Fujara F, Geil B, Heuberger G (1994) J Non-Cryst Solids 172–174Google Scholar
  31. 31.
    Döß A, Hinze G, Böhmer R, Sillescu H (2000) J Chem Phys 112(13):5884–5892CrossRefGoogle Scholar
  32. 32.
    Hanaya M, Hikima T, Hatase M, Oguni M (2002) J Chem Thermodyn 2(34):1173–1193CrossRefGoogle Scholar
  33. 33.
    Cheng SZD (ed) (2002) Handbook of thermal analysis and calorimetry. Elsevier Science B.VGoogle Scholar
  34. 34.
    Paladi F, Oguni M (2003) J Phys: Condens Matter 15(23):3909Google Scholar
  35. 35.
    Hanaya M, Hikima T, Hatase M, Oguni M (2002) J Chem Thermodyn 34(8):1173–1193CrossRefGoogle Scholar
  36. 36.
    Eckstein E, Qian J, Hentschke R, Thurn-Albrecht T, Steffen W, Fischer EW (2000) Phys Rev 113(11):4751–4762Google Scholar
  37. 37.
    Hikima Z, Hanaya M, Oguni M (1995) Solid State Commun 93(8):713–717CrossRefGoogle Scholar
  38. 38.
    Bilgram JH, Dürig U, Wächter M, Seiler P (1982) J Cryst Growth 57(1):1–5CrossRefGoogle Scholar
  39. 39.
    Baran J, Davydova NA (2010) Phys Rev E 81(3):031503CrossRefGoogle Scholar
  40. 40.
    Hanuza J (2004) Vib Spectrosc 34(2):253CrossRefGoogle Scholar
  41. 41.
    Kalampounias AG, Yannopoulos SN, Steffen W, Kirillova LI, Kirillov SA (2003) J Chem Phys 118(18):8340–8349CrossRefGoogle Scholar
  42. 42.
    Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2(1):73–78Google Scholar
  43. 43.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650. The value is Calculated based on Density Functional Theory calculations using the Orca program package (v 4) with 6-311 ++G(2d2p) basis setsGoogle Scholar
  44. 44.
    Bartoš J, Iskrová M, Köhler M, Wehn R, Šauša O, Lunkenheimer P, Krištiak J, Loidl A (2011) Eur Phys J E 34:104CrossRefPubMedGoogle Scholar
  45. 45.
    Takahashi Y, Tadokoro H (1973) Macromolecules 6:672–675CrossRefGoogle Scholar
  46. 46.
    Barroso-Bujans F, Cerveny S, Alegría A, Colmenero J (2013) Macromolecules 46:7932–7939CrossRefGoogle Scholar
  47. 47.
    Barroso-Bujans F, Fernandez-Alonso F, Pomposo JA, Cerveny S, Alegría A, Colmenero J (2012) ACS Macro Lett 1(5):550–554CrossRefGoogle Scholar
  48. 48.
    Matsuura H, Fukuhara K (1986) J Polym Sci B Polym Phys 24(7):1383–1400CrossRefGoogle Scholar
  49. 49.
    Rozenberg M (1998) Spectrochim Acta Part A Mol Biomol Spectrosc 54(12):1819–1826CrossRefGoogle Scholar
  50. 50.
    Fragiadakis D, Runt J (2010) Macromolecules 43(2):1028–1034CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Friedrich Kremer
    • 1
  • Wilhelm Kossack
    • 1
  • Arthur Markus Anton
    • 1
  1. 1.Peter Debye Institute for Soft Matter PhysicsUniversity of LeipzigLeipzigGermany

Personalised recommendations